FUNCTIONAL PROGRAMMING

FP-1..12-2

Contents

Contents of the first part

@ Introduction
@ Abstraction with functions (processes)

@ Elements of the Program
@ Functions and the Processes They Generate

@ Higher-Order Functions
@ Abstraction with data

@ The idea of data-abstraction
@ Hierarchical data structures
@ Multiple Representations for Abstract Data

@ Polymorphic and generic operations

Irodalom: [SICP] Abelson, Sussman & Sussman: Structure and Interpretation of Computer
Programs, The MIT Press, 1996

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

FP-1..12-3

History of Functional Programming

Functional Programming Languages
@ 1930-40s: Alonzo Church: A-calculus
@ LISP (LISt Processing), late 1950s, MIT, US, John McCarthy; typeless
@ for proving some logic expressions (recursive equations), handling symbolic expressions
@ ML (Meta Language), Edinborough, GB, mid 1970s; strongly typed, type inference
@ Scheme, based on LISP, 1975, MIT, US;
@ SML (Standard ML), late 1980s
@ Miranda, 1985;GB; strongly typed, non-strict semantics, pure functional, lazy evaluation
@ Haskell, similar to Miranda, 1990s, US; static polymorphic typing, type classes, monadic I/O
@ Common LISP, 1994, ANSI standard;
@ Clean, similar to Miranda & Haskell 1994, Nijmegen, NL; uniqueness type system (for I/0)
@ Mercury, based on Prolog, 1995, Melbourne, AU, functional & other extensions to Prolog
@ OCaml, based on ML, 1996, INRIA, FR; object-oriented & other extensions to ML

@ Alice, based on ML, 2003, Saarbriicken, DE; optional lazy evaluation, futures, concurrency

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

FP-1..12-4

Functional Programming

What 1s common in functional languages?

@ Recursive functions
@ Recursive data structures

@ Handling of functions as data

In the following weeks:

@ We will discuss computing processes and data handled by them
@ Our programs - the rule systems describing the processes - will be written in SML
@ We will use the Moscow ML compiler & interpreter

@ What we learn about abstraction, modelling and program structure will be useful with other
programming languages as well

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

ABSTRACTIONS WITH FUNCTIONS (PROCESSES)

FP-1..12-6

Program elements

Programming Language: more than just a means for instructing a computer to perform tasks.
Framework within which we organize our ideas about processes, provides ways for combining simple
ideas to form more complex ideas.

@ primitive expressions, which represent the simplest entities the language is concerned with,
@ means of combination, by which compound elements are built from simpler ones, and

@ means of abstraction, by which compound elements can be named and manipulated as units.
Expressions in SML

@ atomic: names and constants: ex. apple, 486, 2.0, "text", #"A" true

@ compound: pl. 482+pear, 2.3-0.3, "te" " "xt", op+(482,4,plum), #"A"< #"a"
How we combine:

@ operators (operator, function)

@ operand (formal parameter)

@ argument (actual parameter)

@ recursion

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

FP-1..12-7

Examples for using SML

The SML interpreter works in a so called read-eval-print loop. The evaluation starts when "; " and
ENTER is pressed.

Moscow ML version 2.00 (June 2000)
Enter ‘quit();’ to quit.

— 486;

> val it = 486 : int

- 2.3-0.3;

> val it = 2.0 : real

- "te"M"xt";

> val it = "text" : string

— op+(482,14);

> val it = 486 : int

- #"A"< #"a";

> val it = true : bool
- val it = 486;

> val it = 486 : int

Each expression is actually a value declaration: if we don’t specify a name, SML binds the name it
to the value.

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

FP-1..12-8

Name giving in the global environment

With value declaration, we bind a name to a value:

— val size = 2;

> val size = 2 : int
— b*gsize;

> val it = 10 : int
- val ||| = 3;

> val ||| = 3 : int
- |1l * size;

> val it = 6 : int

Remark: | and * are adhesive symbols, so there must be a space between them.
A name can be:

@ : alphanumeric, which consists of the small and capital letters, numbers the _ and the ’ symbols
and starts with a letter

@ consists of only symbols

Name giving is the simplest abstraction tool in programming languages.
The name—value pairs are stored in the ,,memory” of SML, the so called global environment. Later
we’ll see that there are local environments as well.

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

FP-1..12-9

Construction rules of names

@ Alphanumeric name: sequence of small letters, capitals, numbers, the apostrophe (”) and the
underbar (_) symbols, starting with letter or apostrophe.

@ Examples: agentSmith Agent_3_Smith agent’smith ’agent

@ Names starting with an apostrophe denote type-variables (see later).

@ Symbol-name: sequence of the following adhesive symbols:

s & S #+ -/ 1 <=>720\~"7" 7~ | *
@ Examples: ++ <—> ||| ## |=|

@ The following reserved symbols have special roles:
() 01 Y,

@ Reserved words (can’t be used as names):

abstype and andalso as case do datatype else end egtype exception
fn fun functor handle if in include infix infixr let local nonfix
of op open orelse raise rec sharing sig signature struct structure
then type val where with withtype while : :: :> | = => —> #

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

Atomic data types

FP-1..12-10

Type name | Description Library
int signed integer Int
real rational (real) Real
char character Char
bool boolean Bool
string |string String
word unsigned int Word
word3 8 bit unsigned int | Word38

Deklarativ programozas. BME VIK, 2004. &szi félév

(Funkcionélis programozas)

FP-1..12-11

Built-in operators and their precedence

In this table, wordint, numés numt xt stand for the followings:
wordint = int, word, wordS8
num=int, real, word, word8
numtxt =1int, real,word, word8, char, string

Prec. | Operator Type Result Exception
7 * num * num —-> num product Overflow
/ real * real -> real quotient Div,Overflow
div, mod | wordint * wordint -> wordint quotient, remainder | Div, Overflow
quot, rem|int * int -> int remainder, quotient | Div, Overflow
6 +, - num * num -> num sum, difference Overflow
A string * string -> string concatenated string | Size
5 e a * ’'a list -> 'a list list with added element
@ a list * 'a list -> ’'a list concatenated list
4 =, <> 'a * '’a —> Dbool equal, not equal
<, <= numtxt * numtxt -> bool less than, less or equal
>, >= numtxt * numtxt -> bool greater than, greater or equal
3 = a ref * "a -> unit assignment
0 (b => ’'c) * ('a —> 'b)-> (’'a —> ’c) | function composition
0 before a * 'b -> 'a left argument

div —oo, quot rounds towards zero. Results of div and quot, mod and rem are equal only if their
two operands have the same sign.

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

FP-1..12-12

Constants

@ Signed integer constant (int)

Examples: 0 ~0 4 ~04 999999 OxFFFF ~O0x1ff
Counter-examples: 0.0 ~0.0 4.0 1EO0 -317 OXFFFF -0x1ff

@ Rational constant (real)
Examples: 0.7 ~0.7 3.32E5 3E~7 ~3E~7 3e~7 ~3e~7
Counter-examples: 23 .3 4.E5 1E2.0 1E+7 1E-7

@ Unsigned integer constant (word)

Examples: OwO Owd 0w999999 OwxFFFF Owxlff
Counter-examples: 0w0.0 ~0w4 -0w4 OwlEOQ OwWXFFFF OWXFFFF

@ Character constant (char): the # symbol and a one-character string (see later).
EXampleSZ #"a" #"\n" #"\AZ" #"\255" #"\""
Counter-examples: # "a" #c A #a’

@ Boolean constant (bool): only two constants

Examples: true false
Counter-examples: TRUE False 0 1

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

FP-1..12-13

Constants, escape sequences

@ String constant: zero or more printable characters, spaces or escape-sequences beginning with the
\ symbol; between double quotes (")

@ Escape-sequences

\a
\b
\t
\n
\v
\f
\r
\"c

\ddd

\ Uxxxx
\"

A\
\F-- A

Bell (BEL, ASCII 7).

Backspace (BS, ASCII 8).

Horizontal tabulator (HT, ASCII 9).

Newline (LF, ASCII 10).

Vertical tabulator (VT, ASCII 11).

Form feed (FF, ASCII 12).

Carriage-return (CR, ASCII 13).

Control-character, where 64 < ¢ < 95 (@ ..._), and the ASCII code of \ “c is
smaller by 64 than the ASCII code of c.

The character having ASCII code ddd (ddd is decimal).

The character having ASCII code xx (xx 1s hexadecimal).

Double quotes (").

Backslash (\).

Ignored characters f - - - f zero or more formatting characters (space, HT, LF, VT,
FF, CR) symbools.

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

FP-1..12-14

Evaluating compund expressions

A compund expression 1s evaluated in two steps (so called eager or applicative
evaluation):

1. First, the operator is evaluated (operator or function), then the operands (arguments),

2. Second, the operator function is called with the arguments

Note that this startegy is simple because it is defined by recursion. =

Evaluation rules of atomic expressions:
1. Values of constants are the values which they stand for,
2. Built in operators (functions) activate the corresponding native operations

3. Values of names are the values which they are bound in the current environment

Remark: 2. is only a special case of 3.

Példa:
(2+4*6)* (3+5+7) = op*(op+(2,0p*(4,6)),0p+(op+(3,5),7))
Expressions can be represented as trees, (see Logic Programming).

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

Anonymous functions, lambda notation, defining functions

FP-1..12-15

Anonymous function with A notation: ex. (fn x => x*x)
Applying an anonymous function: pl. (fn x => x*x) 2

@ The £n symbol is called lambda.
@ x is the formal parameter of the function (local name).
@ x*x is the body of the function.

@ 2 is the argument (actual parameter) of the function.

Giving name to a function (function declaration):

val square = fn x => x * X
val sumOfSquares = fn (x, y) => square X + square y
val £ = fn a => sumOfSquares(a+l, a*2)

Functions defined by the user can be used the same way as built-in functions.

Deklarativ programozas. BME VIK, 2004. &szi félév

(Funkcionélis programozas)

FP-1..12-16

Further examples on defining functions in SML

Function to produce the successive elements of the 2 bit | Hamming-distance code.

@ We can define the function with a table: 00 | 01 fn 00 => 01
0111 | 01 => 11
11110 | 11 => 10
10|00 | 10 => 00

@ Variants (,,clauses”): one variant for each case.

@ The fn (read: lambda) constructs an (anonymous) function expression.
@ Some uses of the function:
@ (fn 00 => 01 | 01 => 11 | 11 => 10 | 10 => 00) 10

@ (fn 00 => 01 | 01 => 11 | 11 => 10 | 10 => 00) 11
@ (fn 00 => 01 | 01 => 11 | 11 => 10 | 10 => 00) 111

@ Pattern-match: one-way unification

@ Easily understandable, but not robust: the function is partial (not defined on every element of the
domain)

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

FP-1..12-17

Further examples on defining functions in SML

Incrementing integers modulo n (ex. n = 5)
@ A function is usually defined with an algorithm, not a table, to avoid too much variants.
@ fn 1 => (i + 1) mod 5
@ 1 is the formal parameter, or bound variable

@ A few uses:

@ (fn 1 => (1 + 1) mod 5) 2
@ (fn 1 => (1 + 1) mod 5) 4
@ (fn i => (i + 1) mod 5) 3.0 — Error!

@ This function could be defined with two clauses:
fn 4 =>0 | 1 =>1 + 1

@ The order is important: SML (unlike Prolog) uses only the first matching clause!

@ Neither of the functions are robust. Which one is better?

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

FP-1..12-18

Binding a name to a function value (declaring function values)

@ We have seen that names can be bound to function values the same way as to any other values.

@ val nextCode = fn 00 => 01 | 01 => 11 | 11 => 10 | 10 => 00

@® val incMod = fn 4 => 0 | 1 => 1 + 1
@ With syntactic sweetener (fun):

@ fun nextCode 00 = 01
| nextCode 01 = 11
| nextCode 11 = 10
| nextCode 10 = 00

@ fun incMod 4 = 0
| incMod 1 = 1 + 1

@ Applying them on some arguments

@ nextCode 01
@ incMod 4

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

FP-1..12-19

Head comment

Let’s write declarative head comment for all our functions!

@ (* nextCode cc = the next element of the 2-bit l1-Hamming distance «
PRE: cc &€ {00, 01, 11, 10}
*)
fun nextCode 00 = 01
| nextCode 01 = 11
| nextCode 11 = 10
| nextCode 10 = 00

@ PRE = precondition

@ PRE: cc € {00, 01, 11, 10} means: the nextCode function’s cc argument must be in
the set {00, 01, 11, 10}, else the resultis undefined.

@ (* incMod i = (i+1l) modulo 5
PRE: 5 > 1 >= 0
*)
fun incMod i = (i+1l) mod 5

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

FP-1..12-20

Function as a value

@ Functions are ,.first-class citizens” in a functional language: they can freely be passed to other
functions, returned as the result of functions, stored in data structures, and so on.

@ The type of a function value is: a — 3, where « is the type of the argument, (3 is the type of
the result.
@ The function itself is a value: function value
@ Important: the function value is NOT the result of the application of the function!
@ Examples:
@ sin (type: real — real)
@ round (type: real — int)
@ o (function composition; type: ((6 — 7) * (a« — 3)) — (@ — 7))
@ Examples for function application:

@ round 5.4 = 5, so the result of the application of the function is of type int
@ round o sin (type: real — int)
@ (roundosin)l.0 = 1 (type: int)

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

FP-1..12-21

Functions with two or more arguments

@ Functions always have only one argument, but:

1. We can use compound arguments: pairs, records, list, etc.
@ ex. f(1,2) is the f function applied to the pair (1, 2)
@ ex. f[1,2,3]is the f function applied to the list [1,2, 3]

2. OR we can apply the function with severan successive steps to arguments:
ex. f 12 = (f 1) 2 means that

@ in the first step, we apply f to 1, which results in a function
@ in the second step, we apply the result function (f 1) to 2 and we get the result of (f 1) 2

@ In f 12, fis apartially applicable function

@ It is the programmer’s choice to write a function with compound argument, or as a partially
applicable function. The difference is only in the syntax (f (1,2) <=> f12). As we will see
later, partially applicable functions are more flexible: they can be applied on some subset of their
arguments.

@ Infix notation: = @ y = the application of the function & to the pair (z, y) as argument.

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

ABSTRACTION WITH FUNCTIONS AND PROCESSES

FP-1..12-23

Application of functions in SML

@ In SML the function name f and its argument e can be any expressions, which must be separated:
f e,orf(e),or (f)e,or (£) (e)

@ Separator: zero, one or more formatting characters (L, \t, \n etc.). No formatting character can be
used only if using parentheses (i.e. before ,,(” or after a ,,)”).

@ Important: the separator is the strongest operator which binds to the left.
ex.f 142=(f 1)+2,£ 1 2= (£ 1) 2!

@ Examples:
Math.sin 1.00 (Math.cos)Math.pi round(3.17)
2 + 3 (real) (3 + 2 * 5)

@ Classifying functions in SML:

@ Built-in functions, ex. +, * (both infix), real, round (both prefix)
@ Library functions, ex. Math.sin, Math.cos, Real.fromInt

@ User-defined functions, pl. square, /\, head

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

FP-1..12-24

Evaluating Function Applications

An expression with user-defined functions is evaluated similarly to other compound expressions.
When we defined that evaluation, de assumed that SML ,,knows” how to apply functions to arguments.
Now we define how SML applies functions:

@ All occurences of the formal parameters in the function body are replaced by the corresponding
arguments, then

@ the function call is replaced with the result of the evaluation of the prepared body
Let’s see how £ 5 is evaluated. Each step, a sub-expression is replaced by an equivalent expression.

f 5 — sumOfSquares (5+1, 5*2) — sumOfSquares (6, 5*2) —
sumOfSquares (6, 10) — square 6 + square 10 —=6*6 + square 10 —
36 + square 10 —36 + 10*10— 36 + 100 — 136

(val sumOfSquares = fn (x, y) => square x + square y;val square = fn x => x * Xx)
This substitution model — equals replaced by equals — helps understanding how function application
works. This model is applicable if the meaning of a function is always independent from its
environment.

Interpreters/compilers usually work with other, more complex — more efficient — models.

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

FP-1..12-25

Applicative order (eager evaluation), normal order (lazy evaluation)

@ When evaluating compound expressions, SML first evaluates the operator, then the arguments,

then calls the operator function with the arguments. This order is called applicative order or eager
evaluation

@ There are other ways, too. The most important is, when we postpone the evaluation of
sub-expressions as long as possible. The evaluation of a sub-expression is needed when it is an
argument of a built-in operator or when it is needed for pattern matching in a user-defined
function, and of course, the function itself is also needed. This is called normal order or
call-by-need or lazy evaluation.

Let’s see how £ 5 is evaluated when using normal order evaluation.

f 5 — sumOfSquares(5+1, 5*2) — square(5+1) + square(5*2) —
(5+1) * (5+1) + (5*2)*(5*2) — 6*(5+1) + (5*2)*(5*2) — 6*6 + (5*2)*(5*2)
— 36 + (5*2)*(5*2) — 36 + 10*(5*2) —- 36 + 10*10 — 36 + 100 — 136

@ It is proven that for functions, for which the substituion model is applicable, these two strategies
lead to the same result.

@ Note that when using lazy evaluation, some sub-expressions must be evaluated multiple times.

@ Compilers/interpreters help this situation with aliasing (references): identical sub-expressions
aren’t copied, only referenced: when one occurance is evaluated, so do the others.

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

FP-1..12-26

Conditional expressions, boolean operators, predicates

@ Type name: bool. Data constructors: false, true. Built-in function: not.

@ Jazy built-in operators (special language constructs)

@ With three parameters: 1if b then el else e2.
It doesn’t evaluate 2, if b evaluates to t rue, and doesn’t evaluate e 1 otherwise.

@ With two parameters:
el andalso e2:doesn’tevaluate e2,if el is false.
el orelse e2:doesn’tevaluate e2-t,if el 1s true.

@ All three operators are just syntactic sweeteners:

@ if b then el else e2= (fn true => el | false => e2) b
@ el andalso e2 = (fn true => e2 | false => false) el

@ el orelse e2= (fn true => true | false => e2) el

@ Typical error: 1f exp then true else false

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

FP-1..12-27

Conditional expressions, boolean operators, predicates

Let’s see some examples.

val absolute = fn x => if
else
else

val absolute = fn x => if
else

use "sumOfSquares.sml";

val sumOfSquaresOfTwolLarger
fn (x,y,z2) =>
if X < y and
else if y < x and
else

X < 0 then ~x
if x > 0 then x

X < 0 then ~x

also x < z then sumOfSquares(y, 2z)
also y < z then sumOfSquares(x, z)
sumOfSquares (x, V) ;

Predicate is a function which’s return value is boo 1. Example:

val isAlphaNum = fn c =>
#"A" <= ¢ andalso c <=
#"a" <= ¢ andalso c <=
#"0" <= c andalso c <=

#"7Z" orelse
#"z" orelse
#"9"

Deklarativ programozas. BME VIK, 2004. &szi félév

(Funkcionélis programozas)

FP-1..12-28

Conditional expressions, boolean operators, predicates

@ Trivial: andalso and orelse can be expressed with i f-then-else:

@ if el then e2 else false=el andalso e2

@ if el then true else e2=el orelse e2

@ [et’suse andalso and orelse instead of if-then-else where applicable, it makes the
code more readable.

@ In SML, user-defined functions can’t be lazy. SML always evaluates the arguments before calling
a function.

@ Eager equivalents of andalso and orelse:

(* && (a, b) = a /\ b (* Il (a, b) = a \/ b
&& : bool * bool —> bool || : bool * bool —-> bool
* *
))
fun op&& (a, b) = a andalso b; |fun opl|| (a, b) = a orelse b;
infix 2 && infix 1 ||
@ infix prec namel name2 ... :turns namel nameZ2 ... functions to infix operators

with prec precedence and binding to the left.

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

FP-1..12-29

Calculating square roots with Newton’s method

@ Functions in a functional languages are similar to functions in mathematics: they return values
depending on the values of one or more arguments. There is a big difference: functions in
functional languages must be efficiently computable.

@ Let’s see the definition of the square root function in math:
VT =y, where y > 0 and 3> = .

@ This equation system is adequate for checking whether a number is a square root of another, but is
it adequate for computing square roots?

@ Functions in mathematics declare a property, functions in functional languages also tell, how to
produce the value. That is, declarative programming is declarative only when compared to
imperative programming (WHAT? <=> HOW?).

@ A well-known method for computing square roots is Successive Approximation: If y is an
approximation for the square root of z, then the average of y and x/y is a better approximation.
The process produces successive approximations of /= and stops when the approximation is
considered good enough.

@ Let’s write this algorithm in SML.

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

FP-1..12-30

Calculating square roots with Newton’s method

val rec sqgrtlter =
fn (guess, x) => if goodEnough (guess, Xx)
then guess
else sqgrtlter (improved(guess, X), X)

@ The rec keyword means that the value declaration is recursive: the declared value (name) will be
used in its own declaration.
@ Our strategy is a good example for top-down design. In the beginning, we don’t care about details,

we assume that everything we need is already available, and we implement them later.

So, we have to define a few details:

val improved = fn (guess, x) => average(guess, x/guess)

val average = fn (x, y) => (x+y)/2.0

val goodEnough = fn (guess, x) => abs(square_r guess - x) < 0.001
val square_r = fn (x : real) => x * x

Finally, we have to call out sgrIter function with an initial approximation value:

val sgqrt = fn x => sqgrtlIter (1.0, x);

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

FP-1..12-31

Calculating square roots with Newton’s method

@ Unfortunately, the order of declarations is not adequate: SML requires that the definition of names
must precede their first use. (This is not required in some (lazy) functional languages!!!)

@ We could reverse the order of our declarations, but then the code wouldn’t reflect our design, our
way of thinking.

@ We can use simultaneous declaration, which means, that several declarations are grouped
together: read simultaneously, then processed simultaneously. The names declared together are
separated by the and keyword.

val rec sqgrtlter =
fn (guess, x) => if goodEnough (guess, Xx)
then guess
else sqgrtlter (improved(guess, X), X)

and improved = fn (guess, X) => average(guess, x/guess)

and average = fn (%X, y) => (x+y)/2.0

and goodEnough = fn (guess, x) => abs(square_r guess - x) < 0.001
and square_r = fn (x : real) => x * x

val sgrt = fn x => sqgrtlIter (1.0, x)

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

FP-1..12-32

Calculating square roots with Newton’s method

@ Up to this point, our abstraction methods (name giving for names and functions) are useful for
handling complex things as units, but aren’t useful in hiding details.

@ There are several language constructs for hiding details. The most essential is the ,,expression with
local declal declaration”, or simply ,,1 et-expression”,

@ The 1et-expression is used also for defining (and evaluating) recurring expressions only once.

@ Syntax: let d where d is a non-empty declaration-sequence,

in e . .
€ 1S a non-empty expression.

end

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

FP-1..12-33

Calculating square roots with Newton’s method

fun sqgrt x =
let fun sqgrtlter (guess, x) = if goodEnough (guess, Xx)
then guess
else sqgrtlter (improved(guess, X),X)

and improved (guess, x) = average(guess, x/guess)
and average (x, y) = (x+y)/2.0
and goodEnough (guess, x) = abs(square_r guess - x) < 0.001
and square_r (x : real) = x * X
in
sgrtliter (1.0, x)
end

@ In SML the scope and visibility rules are similar to the rules in other languages

@ For example, the x formal parameter of the sgrt function is visible in the functions defined
inside sqgrt, unless they’re covered by a local x name. x is used everywhere inside sgrt as a
global name.

@ Remark: the : real type constraint could be omitted: SML can derive the type from the
environment.

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

FP-1..12-34

Calculating square roots with Newton’s method

(* A simplified wvariant: *)
fun sqgrt x =
let fun sgrtlIter guess = if goodEnough guess
then guess
else sqgrtlter (improved guess)

and improved guess = averagdge (guess, x/guess)
and average (x, y) = (x+y)/2.0
and goodEnough guess = abs(square_r guess - x) < 0.001
and square_r x = X * X
in
sgrtIter 1.0
end;

With giving meaningful names to parts of the program, it bacame simpler and easier to understand.
With separation of concerns,

@ programming,
@ understanding (for future readers),

@ modifying became easier.

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

FP-1..12-35

Procedures (functions) and processes

@ Procedures (functions) are patterns, which define, what the computations do, define the local
behaviour of the processes.

@ The global behaviour of a process (number of steps, execution time, space consumed) is more
difficult to guess.

Linear recursion and iteration

@ Simply transforming the mathematical definition of the factorial function to SML gives:
(* PRE : n >= 0 *)
0l=1 fun factorial 0 =1
n! =n(n—1) | factorial n = n * factorial(n-1)

@ If we apply our substitution model, we can see that the process produces and stores all the
numbers between n and 1, before executing the first multiplication, it postpones the
multiplications. This is a linear recursive process.

@ Instead of this, we could multiply 1 with 2, then the partial result with 3, then with 4, and so on,
when reaching n, the last partial result would be n!. For this, we need an auxiliary formal
parameter (or a local variable in imperative languages), which stores the current partial result, and
another, which counts from 1 to n. This would be a linear iterative process.

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

FP-1..12-36

Linear recursion and iteration

fun factorial n =
let fun factlIter (product, counter) =
if counter > n
then product
else factlter (product*counter, counter+1)
in
factIter(1l, 1)
end
@ We get a simpler, clearer version of factIter, if we decrement the counter from n
(* PRE : n >= 0 *)
fun factorial n =
let fun factlIter (product, 0) =
product
| factlIter (product, counter) =
factIter (product*counter, counter-1)
in
factIter(l, n)
end

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

FP-1..12-37

Linear recursion and iteration

Linear recursive version: Linear iterative version:
factorial 5 factIter (1 , D)
5*factorial 4 factIter (1 *5,4)
5*(4*factorial 3) factIter (5 , 4)

(4 (3*factorial 2)) factIter (5 *4,3)
(4 (3*(2*factorial 1))) factIter (20 , 3)
(4(3* (2 (1*factorlal 0)))) factIter (20 *3,2)
(4(3* (2 (1)))) factIter (60 , 2)
(4 (3% (2 1))) factIter (60 *2,1)
(4 (3% 2)) factIter (120 , 1)
(4 6) factIter (120 *1,0)
5% 24 factIter (120 , 0)
120 120

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

FP-1..12-38

Procedures (Functions) and Processes

@ Don’t mix recursive processes and recursive procedures (functions).
@ In the case of a recursive function, it is a matter of sintax: the function calls itself.
@ In the case of a recursive process, we are talking about how the computation is executed.

@ [f the function is right-recursive (tail-recursive, terminal-recursive) the generated process can be
iterative (depending on the goodness of the interpreter/compiler).

We’ll return to the topic of ,,abstraction with functions”, but now we switch topic: we study the
concept of parametric polymorhpism, and a polymorph data structure, the list.

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

POLYMORPHISM

FP-1..12-40

Polymorphism

@ Let’s examine the identity function: fun id x = x

@ What is the type of x? It can be of any type, its type is denoted by a type variable:
Moscow ML: val 'a id = fn : 'a —> 'a
SML/NJ: val id = fn : ’a -> ’'a

@ id is a polymorph function, x and id are poly-typed names.

@ Names beginning with an apostrophe are type names, and the one-letter type names are
pronounced as the corresponding greek letter (ex. " a, alpha).

@ Let’s examine the equality function: fun eq (x, y) = x = vy.
@ What are the types of x and y? val "a eq = fn : "a * "a -> bool.

@ Names beginning with two apostrophes are equality-typenames, they stand for types which can be
checked for equality. The atomic data types are equality types, except for real, and compound
data types containing only equality types are equality types.

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

FP-1..12-41

Types of Polymorphism

Polymorphism shows up in different forms in programming:

@ If a polymorph name denotes one single algorithm which can be used on arguments of any type, it
1S parametric polymorphism.

@ If an overloaded name denotes several different algorithms: one algorithm for each type it is
defined for, it i1s ad-hoc or overloaded polymorphism.

@ A third variation is polymorphism via inheritence (see object oriented programming).

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

LISTS

FP-1..12-43

List: definition, data- and type-constructors

@ Definition

1. A list is a finite sequence of elements having the same type.
2. A list 18 a linear recursive data structure, which can be

@ empty,

@ the first element and the list of the other elements.

@ Constructors

@ The empty list is denoted by the ni1 name, which is a data constructor constant.
@ We usually use the [] symbol instead of ni1 (syntactic sugar).

@ Thetypeofnilis: "a list.

@ "aisatypevariable, 11ist is a type constructor function.

@ The : : name is a data constructor function (or a data constructor operator).
It creates a new list from an element and a (possibly empty) list.

@ Thetypeof : : is: 'a * ’'a list -> ’'a list.
It is an infix operator, having precedence 5, binding to the right.

@ The : : name is pronounced four-dots (or cons (constructor) for historical reasons).

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

FP-1..12-44

List: notation, patterns

@ Examples

@ Creating lists with data constructors:

nil #"" s nil
3 :¢+5 :: 9 :: nil = 3 :: (5 :: (9 :: nil))

@ Syntactic sweetener for lists:

[] = nil
[3, 5, 9] = 3 :: 5 :: 9 :: nil
@ Caution! Prolog’s list notation is similar, but there are differences:
SML Prolog ‘ SML Prolog
[] [] same (X::X3) [X]|Xs] different

[1,2,3]1 [1,2,3] same (x::y::ys) [X,Y|Ys] different

@ Patterns
Expressions built with [] and nil data constructor constants and with the : : data constructor
operator, and the [x1, x2, ..., xn] list-notation can be used in patterns (in the head of
functions).

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

FP-1..12-45

List: head (hd), tail (t1)

@ The first element of a (non-empty) list is its head.

(* hd : ’a 1list —> ’'a

hd xs = the first element of the non-empty list xs (head of xs)
*)
fun hd (x ::) = x;

@ The list containing the elements of a list, after the first (its rail).

(* t1l : ’a list —> ’a 1list
tl xs = the list containing the elements of a list xs,

(the tail of x)

after the

*)
fun tl (_ :: Xs) = Xxs;
@ hd and t1 are partial functions. The Lists.hd and List.t1 functions return an Empty

exception when applied to empty lists.
@ The _ (underbar) is the so called wildcard symbol, the match-anything pattern. In contrast to

Prolog, it can only be used in function heads.

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

FP-1..12-46

Handling lists: length (1ength), sum of elements (i sum), product of elements
(rprod)

@ The 1ength function returns the length of a list.

(* length : ’a list —-> int

length zs = the number of elements in zs *)
fun length [] = 0
| length (_ :: zs) = 1 + length zs

@ The isum function returns the sum of elements in an integer list.

(* isum : int list -> int

isum ns = the sum of elements in ns *)
fun isum [] = 0

| isum (n :: ns) = n + isum ns

@ The rprod function returns the product of elements in a real list.

(* rprod : real list -> real

rprod xs = product of elements in xs *)
fun rprod [] = 1.0

| rprod (x :: Xs) = X * rprod Xxsj;

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

FP-1..12-47

Examples: hd, t1, length, isum, rprod

@ hd, tl
Expression Result of evaluation
List.hd [1, 2, 31; > val it =1 int
List.hd []; ! Uncaught exception:
' Empty
31; > val it = [2, 3] int list

List.tl [1, 2,
List.tl T[] !

@ length, isum, rprod

Uncaught exception:

Empty

Expression Result of evaluation

length [1, 2, 3, 47; > val it = 4 int
length []; > val it = 0 int
isum [1, 2, 3, 4]; > val it = 10 int
isum []; > val it = 0 : int
rprod [1.0, 2.0, 3.0, 4.0]; > val it = 24.0 real
rprod []; > val it = 1.0 real

Deklarativ programozas. BME VIK, 2004. &szi félév

(Funkcionélis programozas)

FP-1..12-48

map: Aplying a function to each element of a list

@ Example: calculate the square root of each number in a list.

load "Math";
map Math.sqgrt [1.0, 4.0, 9.0, 16.0] = [1.0, 2.0, 3.0, 4.0];

@ In general: map £ [x1, X9, ..., x,] = [f %1, £ %9, ..., £ x,]
@ The definition of map is (map is a polymorph function):

(*map : ('a —> 'b) -> ’'a list -> ’'b list
map £ xs = the list of elements in xs mapped by £

*)
= []

fun map £ []
| map £ (x :: xs) = f x :: map f xs;

@ The type of map is (because the —> type operator binds to the right!):
('a —> 'b) -> ’'a list —> 'b list = ('a —> 'b) -> ('a list -> ’'b list)
@ The map function is a partially applicable, and higher order function: if appliedtoa "a -> 'b

function, resultstoa "a list —-> ’b 1ist function. The resulted function, when applied to a
a list,resultsina 'b list.

@ This function is pre-defined in SML.

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

FP-1..12-49

Proving (informally) the correctness of recursive functions, with map as an example

@ We have to prove that the recursive function is

@ functionally correct: the result is what we expect
@ the evaluation of the function is finite (it does not fall in an ,,infinite recursion”)

@ The proof is with structural induction by length (similar to mathematical induction)

fun map £ [] = []
| map £ (x :: xs) = f x :: map £ xs
@ Let’s assume that map works for lists of length n — 1. (tail of the list, xs)
@ Let’s apply £ to the first element of the list. (head of the list, x)
@ Let’s build a new list from £ x andmap f xs

@ The result is what we expected, we have proven that if the function works for lists of length
n — 1, then it works for lists of length n.

@ It trivially works for lists of length 0.

@ The evaluation is finite, because
@ ecvery list is finite,
@ When recursively calling map, its argument is a one shorter list in every step.
@ The recursion is stopped when the empty list is reached.

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

FP-1..12-50

A few built-in and library functions

@ explode : string —> char 1ist —the list of characters in the string
pl. explode "abc" = [#"a", #"b", #"c"]

@ implode : char list —-> string - the string made of the characters in the list
pl. implode [#"a", #"b", #"c"] = "abc"

@ Variants of map, which work for other compound structures. Examples:

@ String.map : (char -> char) -> string -> string

@ Vector.map : ('a -> ’'b) -> ’'a vector -> 'b vector
@ In the Char library, we can find many useful predicate functions. Examples:

@ Char.isLower : char -> bool —true for the lower case letters of the alphabet

@ Char.isSpace : char -> bool —true for the formatting characters

@ Char.isAlpha : char -> bool —true for letters of the alphabet

@ Char.isAlphaNum : char -> bool —true for letters of the alphabet and for numbers

@ Char.isAscii : char -> bool —true for characters having ASCII code smaller than
128
pl. Char.isSpace #"\t" = true; Char.isAlphaNum #"!" = false

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

FP-1..12-51

filter: elements of the list that satisfy a predicate

@ Example: Collect the lower case letters from a string.

List.filter Char.isLower (explode "AlTeRnAtInG") = [#"1",#"e",#"n",#"t",#"n"];
@ In general,if p x; = true, p x9 = false, p x3 = true, ..., p X1 = true,
then filter P [x1, X2, X3, ..., Xopy1] = [xX1, X3, ..., Xot1].

@ The definiton of filter:

(* filter : ('a —-> bool) —> ’'a list —> ’'a list
filter p zs = The elements of zs satisfying p
*)
fun filter _ [] = []
| filter p (x :: xs) =
if p x then x :: filter p xs else filter p xs;

@ The type of filter (a —> binds to the right!):
filter : ('a -> bool) -> ’"a list -> ’'a list.
Thatis,if filterisappliedtoa "a —> bool function (an ’ a predicate), results in a

("a list —-> ’'a 1list) function, which when appliedto an "a 1ist, results in an
"a list.

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

FP-1..12-52

Finding the maximal element 1n a list

@ The empty list does not have a maximal element,
@ The maximal element in a one-element-list is the only element,
@ The maximal element of a list having at least two elements is:

@ The maximum of the first element and the maximal element in the tail of the list

load "Int"; max a variant for integers:
(* maxl : int list -> int (* max: int * int -> int
maxl ns = The maximal max (n,m) =
element in ns the maximum of n and m
*) *)
fun maxl [] = raise Empty fun max (n,m) = if n>m
| maxl [n] = n then n
| maxl (n::ns) = Int.max(n, maxl ns) else m

@ The maximal element in the list with the smaller of the first two elements removed

fun maxl’ [] = raise Empty
| maxl’ [n] = n
| maxl’ (n::m::ns) = maxl’ (Int.max(n,m)::ns)

@ Unlike in max 1, here the order of clauses is unimportant (the patterns are disjunct).
@ max1’ is tail-recursive, its space consumption is constant.

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

FP-1..12-53

Finding the maximal element 1n a list

@ How can we make max1 a polymorph function? We define it as a generic function: It has an extra
parameter, the function which choses the maximum of two elements.

(* maxl : ('a * 'Ta —> "a) -—> 'a list —> 'a

maxl max zs = the maximal element in zs, according to max
*)
fun maxl max [] = raise Empty

| maxl max [z] = 2z

| maxl max (z::zs) = max(z, maxl max zs)

@ max is always the same, even so we give it as an argument in each recursive call. We can improve
efficiency (in some implementations), if we use a let-expression:

fun maxl max zs = let fun mxl [] = raise Empty
| mxl [y] =Yy
| mxl (y::ys) = max(y, mxl ys)
in
mxl zs
end

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

FP-1..12-54

Variations of max

Variations of max

@ (* charMax : char * char -> char

charMax (a, b) = the maximum of a and b

<)

fun charMax (a, b) = 1f ord a > ord b then a else b;

or simply without ord:

fun charMax (a : char, b) = if a > b then a else b;

((int * real) * (int * real)) -> (int * real)

@ (* pairMax
lexicografically greater of n and m

pairMax (n, m) =

)

fun pairMax (n as (nl : int, n2 : real), m as (ml, m2)) =
if nl > ml orelse nl = ml andalso n2 >= m2 then n else m;
@ (* stringMax : string * string —-> string
stringMax (s, t) = the greater of s and t
*)
fun stringMax (s : string, t) = if s > t then s else t;

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

FP-1..12-55

Concatenating (append) and revesring (nrev) lists

@ Concatenation of two lists (append function, or infix operator @)

[xla - '7ajm]@[y17 Tt 7yn] - [3317 Tt 7xm—1]@<xm::[y17 < 7yn]) — e [xla ey Iy Y1 - 7yn]

First, we decompose x s to its elements, then we append the elements to ys backwords, starting
from the end of xs, because lists can be built on the left. Number of steps: O(n).

(* append : ’'a list * 'a list -> ’'a list

append(xs, ys) = the elements of xs added to the front of ys *)
fun append ([], ys) = ys

| append (x::xs, ys) = xX::append(xs, ys)

@ Naive reverse of a list (nrev)
nrev|ri, T, ..., Ty =nrev(ry, ..., r,|Qlr] =nrev|... x,|Qx]|Qlx | = ... =[x, ..., 2]
We append the first element as a one-element list to the end. The number of steps: O(n?).
(* nrev : "a list -> ’'a 1list
nrev xs = reverse of xs *)

fun nrev [] = []
| nrev (x::xXs) = (nrev xs) @ [x]

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

FP-1..12-56

Reversing lists: example for using nrev

@ Example for evaluating nrev:

The operators : : and @ bind to the right, have precedence of 5.

fun nrev [] = []
| nrev (x::xXs) = (nrev xs) @ [x]
fun [] @ ys = ys
| (X::Xs) @ ys = x :: xs @ ys (* = (x :: x8) @ ys *)

nrev([1l,2,3,4]) — nrev([2,3,4])QR[1] — nrev([3,4])Q@[2]@[1]
nrev([4])@[3]@[2]Q@[1] — nrev([])@[4]1Q@[3]1Q@[2]Q@[1]
[J@[4]@e[3]er2jef1] — [4]@[3]@[2]Q@[1]
4::[]Q@[3]Q@[2]Q@[1] — 4::[3]1Q@[2]@[1])

[4,3]1Q@Q[2]1Q@[1]) — 4::([3]1Q@[2])@Q[1])

— [1@[4]@(3::[2,1] — []@[4]@[3,2,1] — ...

nrev isn’t efficient: the number of steps is O(n?).

N
N
N
N

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

FP-1..12-57

Appending and reversing lists (revApp and rev)

@ Appending the elements of a list in front of another, in reverse order (revApp)

(* revApp : 'a list * 'a list -> ’a list

revApp(xs, ys) = the elements of xs in reverse order and ys
*)
fun revApp ([], ys) = ys

| revApp (x::Xs, ys) = revApp(xs, X::VYS)

The number of steps for revApp is proportional to the length of the list. With its help, we can
implement rev:

(* rev : ’'a list —-> ’'a list
rev xXxs = Xs reversed

*)

fun rev xs = revApp (xs, [])

A list having 1000 elements is reversed in 1000 steps by rev and in w = 500500 steps by

nrev.

@ append — @ as an infix operator — and rev are available as built-in functions.

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

COMPOUND DATA STRUCTURES

FP-1..12-59

Record and n-tuple

@ From two different types, we can form a record or a pair. ex:

real} és (2, 1.0) (int * real)

{(x = 2, v =1.0} {x : int, vy
@ A pair is just syntactic sweetener. ex:

- 1.0} ={2 = 1. 2} % {1 =1.0, 2 = 2}.

(2, 1.0) =1{1 =2, 2 = 0, 1 =
In a pair, the order of fields is important! 1 and 2 are field names.

@ We can form a record with more than two values. ex:
{nev = "Bob", tel = 3192144, age = 19} {kor : int, nev string, tel : int}
And similar record with numbers as field names:

string, 2 : int, 3 int}

{1 = "Bob", 3 = 3192144, 2 = 19}: ({1

The latter is equivalent of the following n-tuple

(string * int * int)

("Bob", 19, 3192144)

that is
(string * int * int) = {1 = string, 2 = int, 3 = int}
@ In arecord, the order of fields is unimportant, the fields are identified by the field names. In an

n-tuple, the order is important, fields are identified by their position.

(Funkcionélis programozas)

Deklarativ programozas. BME VIK, 2004. &szi félév

WEAK AND STRONG ABSTRACTION

FP-1..12-61

Data types: weak and strong abstraction

@ Weak abstraction: the name is just a synonim, the parts of the data structure are still visible and
available

@ Strong abstraction: the name denotes a new entity (object), availability of the parts of the data
structures 1s limited

@ type: weak abstraction; pl. type rat = {num : int, den : int}

@ Gives a new name to a type expression (compare with value declaration).

@ Helps reading the program.

@ datatype: in combination with modules: strong abstraction

ex: datatype ’'a option = NONE | SOME of 'a

@ Creates a new entity.

@ Can be recursive and polymorph.

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

FP-1..12-62

Data types: enumerated and polymorph types with datatype declaration

@ datatype answer = Yes | No Enumerated type.
datatype answer3 = yes | no | maybe Enumerated type.
datatype ’a option = NONE | SOME of ’a Polymorph type.

@ The new entities: Yes,No, yes, no, maybe, NONE are values, data constructor (constant)s.
SOME is data constructor function. Data constructors are in the same namespace as the other

(value) names.

@ The new entities: answer and answer 3 are type constructor (constant)s. option is a type
constructor function (postfix operator). Type constants (answer) and type functions applied to
other types (int option, "a option) are type expressions. Type constructors are in a
different namespace as value names.

@ Of course, data constructors have a type as well. ex:

Yes : answer NONE : ’'a option
No : answer SOME : ’'a —> ’'a option

@ Example for function handling a user-defined datatype:

fun invert No = Yes | invert Yes = No

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

WORTH TO MENTION

FP-1..12-64

Worth to mention

@ Unit value and type

The () or {} symbolis a O-tuple, its type is unit. The O—tuple is the only value of the type
unit. The unit type is the identity element of type operations.

@ The print function

If the print function (string —-> unit) when applied to a string, the resultis a
O—-tuple, and a side effect is that the string is written to the standard output.

@ The (el;e2;...;en) sequential expression’s result is the value of en. If e1, e2, ... have side
effects, it will be carried out. (el; e2; e3) isequivalent to the following 1et-expression:

let val _ = el val _ = e2 in e3 end

@ The value of the el before e2 ... before e3 expression isequivalent to thr value of
el.If el, e2, ... have side effects, it will be carried out. e1 before e2 before e3is
equivalent to the following 1et-expression:

let val e = el val _ = e2 val _ = e3 in e end

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

ABSTRACTION WITH FUNCTIONS

FP-1..12-66

Tree recursion

@ So far, we have met linear recursive and linear iterative processes (calculating factorials in several
ways).

@ Now let’s see examples for tree recursion: let’s generate the sequence of Fibonacci-numbers.
@ A Fibonacci-number is the sum of the two previous Fibonacci-numbers:
o, 1, 1, 2, 3, 5, 8, 13, 21,

@ The definition of Fibonacci-numbers can be easily transformed into an SML function:

F(0)=0 fun fib 0 = 0
F(l)=1 | fib 1 =1
Fn)=Fn—-1)+F(n—2),han > 1 | fib n = fib(n-1) + fib(n-2)

Remember: the third clause of the £ ib function must be the last, because the n pattern matches
anything.

@ A recursive function (procedure) with more than one recursive call is called tree recursion.

@ The figure on the next slide will show how this tree-recutsive function evaluated.

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

FP-1..12-67

Tree recursion

fib &

S

Fib 4 £ib 3

/ NN

flb 3
fib Z :
/ \ fib 1) |[fib 0 1

fib 2 fib 1 fib 1 £fib 0
£fik 1/ [fib O 1 1 0
1 0

@ We get £ib 5 with calculating fib 4 and fib 3, fib 4 with fib 3 and £ib 2 and so on.

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

FP-1..12-68

Tree recursion

@ The previous program is good for introducing tree recursion, but almost totally unusable for
generating Fibonacci-numbers.

@ Note that for example we calculated £ib 3 two times, doing about the third of the work
unnecessarely.

@ [t can be proven that for F'(n), a tree with exactly F'(n + 1) leafs must be fully explored, where the
leafs are the F'(0) and F'(1) calls.

@ F'(n)is an exponential function of n. To be more precise, F'(n) is an integer close to ®"/+/5,
where ® = (1 — v/5)/2 ~ 1.61803, the so called golden section ratio number. ® satisfies the
®? = & + 1 equation.

@ The number of required steps grows togerher with F'(n), exponentially with n. In the meanwhile,
the memory consumed is only proportional to n, because only one root-leaf path has to be kept in
memory.

@ In general, it is true that the number of steps is proportional to the leafs and nodes of the tree,
while the memory usage is only proportional to the maximal depth of it.

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

FP-1..12-69
Tree recursion

@ Fibonacci-numbers can be generated by a linear-iterative process.

If there are a and b variables with initial values F'(1) = 1 and F'(0) = 0 respectively, and we

iteratively apply the a < a + b and b « a transformations, after n iterations, a = F'(n + 1) and
b = F(n) will hold.

@ It is an imperative algorith, which is straightforward to implement in imperative languages. Let’s
see how it can be implemented in SML.

fun fib n = let fun fibIter (i, b, a) =

if 1 =n
then b
else fibIter (i+1l, a, a+b)
in
fibIter (0, 0, 1)
end

@ Note that the transformation is the same straigtforward: loops (iterations) are (tail-)recursive

auxiliary functions, local variables are parameters of the functions, initial values appear as
arguments of the auxiliary functions.

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

FP-1..12-70

Tree recursion

@ Pattern matching can be used if we decrement i from n to 0.

fun fib n = let
fun fibIter (0, b, a) = Db
| fibIter (i, b, a) = fibIter(i-1, a, a+b)
in
fibIter(n, 0, 1)
end

@ Warning: the order of clauses is important, as the pattern aren’t disjunct.

@ Note that in contrast to imperative style, the place where the "variables" are "changed" is strict: in
the recursive function call. In an iteration in an imperative language, you can scatter your variable
assignments anywhere in the loop, and if a variable is unchanged, then there is no point where this
can be seen: the absence of the assignment is hard to notice.

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

FP-1..12-71

Tree recursion

@ In the Fibonacci-example, the numer of steps was exponential to n in the tree-recursion example,
and was proportional to n in the linear-iterative version.

@ It would be a mistake to conclude that tree recursion is useless. When dealing with hierarchical
data structures, for example, working with trees, tree recursion is natural and useful.

@ Tree recursion can be also useful when impementing a first version of the solution for a problem:
it is easy to implement, easy to reason about the program.

@ In our example, it was easy to transform the mathematical definition to a program, and after
examined and understood, was easy to change it to become efficient, too. Tree recursion helps
understanding a problem and solution.

There was a need for only a small idea to transform our program to iterative.
For this example, it isn’t that simple:

@ How many ways can you change one dollar to 50-, 25-, 10-, 5- and 1-cent coins?

@ In general: How many ways can you change a given amount of money to given coins?

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

FP-1..12-72

Tree recursion: changing money

Let’s assume that we have n different type of coins, in a descending order. Then the number of ways
in we can change a dollars 1s, we calculate

@ how many ways we can change a without using the first (the biggest) coin (having value d), and
we add

@ how many ways we can change a — d with all the coins we have. In other words: how many ways
we can change a in such a way that we use the first coin at least once.

This problem can be solved by recursion, as the problem can be reduced to smaller problems:
changing smaller amount of money with less coins. The base cases can be the following:

@ If a = 0, the number of ways is 1.

(If we have 0 dollars, it can be changed only one way: with 0 coins)
@ If o < 0, the number of ways is 0.

@ If n = 0, the number of ways is 0.

In our example, we implemented the £irstDenomination function with enumeration.
It would be more flexible to implement it with using a list.

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

FP-1..12-73

Tree recursion: changing money

fun countChange amount =
let (* cC amount kindsOfCoins = the number of ways amount can be changed with
using kindsOfCoins coins *)
fun cC (amount, kindsOfCoins) =

if amount < 0 orelse kindsOfCoins = 0 then 0
else if amount = 0 then 1
else cC (amount, kindsOfCoins - 1) +
cC (amount - firstDenomination kindsOfCoins, kindsOfCoins)
and firstDenomination 1 = 1
| firstDenomination 2 = 5
| firstDenomination 3 10
| firstDenomination 4 = 25
| firstDenomination 5 = 50
in
cC (amount, b5)
end;

countChange 10 = 4; countChange 100 = 292;
Practice:

@ Change firstDenomination function to have the values of coins in a list.

@ Change cC function to use pattern matching.

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

FP-1..12-74

Exponents

@ In processes seen so far, the number of evaluation (execution) steps grew linearly, or exponentially
with n, the number of data units. In the next example, the number of steps is proportional to the
logarithm of n.

@ The definition of b raised to the n-th power is also easy to transform into SML.

=1 fun expt (b, 0) = 1
b =10 b1 | expt (b, n) = b * expt(b, n-1)

@ The outcome process is linear recursive. Execution requires O(n) steps and memory of size O(n).

@ It is similarly easy to write the linear iterative version of computing the factorial.

fun expt (b, n) =
let fun exptlIter (0, product) = product
| exptlter (counter, product) =
exptIter (counter-1, b * product)
in
exptIter(n, 1)
end

@ Execution requires O(n) steps and memory of size O(1) i.e. constant.

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

Exponents (cont’d.)

FP-1..12-75

@ Fewer steps suffice, provided we take advantage of the equations below:

=1

b = (b"/?)?, if n is even
b" =b-b" 1, if nis odd

fun expt (b, n) =
let fun exptFast 0 = 1
| exptFast n =

if even n
then square (exptFast(n div 2))
else b * exptFast(n-1)

and even i = 1 mod 2 = 0

and square X = X * X

in exptFast n end

@ Steps and memory needed is proportional to O(lgn). Iterative version with constant storage req.:

fun expt (b, 0) =
| expt (b, n) =

1 (* Notto be omitted! Why not? *)
let fun exptFast (1, r) =r
| exptFast (n, r) =
if even n then exptFast(n div 2, r*r)

else exptFast(n-1, r*b)
and even 1 = 1 mod 2 = 0
in exptFast(n, b) end

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

LISTS

FP-1..12-77

A given number of elements from the beginning and end of the list (take, drop)

@ Letxs = |xg,21,...,Ti 1, Ti, Tis1,- .-, Tn_1], then
take(xs, 1) = [IQ, Ty ... ,ZCi_l} and drop (xs, 1) = [Iz', Litly - ,In_l].
@ An implementation of take (is it tail-recursive? can it be made tail-recursive? is it robust?)

(* take : ’'a list * int -> 'a list
take (xs, i) = if 1 < 0, xs;, if i >= 0,
list consisting of the first i elements of xs *)
fun take (_, 0) = []
| take ([]1, _) = []
| take (x::xs, 1) = x :: take(xs, i-1)

@ An implementation of drop (is it tail-recursive? can it be made tail-recursive? is it robust?)

(* drop : ’'a list * int -> ’'a list
drop(xs, 1) = 1if 1 < 0, xs; if i >= 0,
list obtained by leaving the first i elements of xs ¥*)
fun drop ([], _) = []
| drop (x::xs, i) = if 1 > 0 then drop (xs, i-1) else x::xs

@ Their library versions — List.take, and List .drop — when applied to the list xs, raise an
exception named Subscriptifi <0or¢ > length xs.

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

FP-1..12-78

Reduction of a list by dyadic operations

Let’s recall the two versions of the max1 function, which finds the maximal element of an integer list:

@ The version of max1 performing right-to-left reduction (non-tail-recursive)

(* maxl : int list -> int

maxl ns = the maximal element of the integer list ns
*)
fun maxl [] = raise Empty

| maxl [n] = n

| maxl (n::ns) = Int.max(n, maxl ns)

@ The version of max1 performing left-to-right reduction (tail-recursive)

(* maxl’ : int list -> int

maxl’ ns = the maximal element of the integer list ns
*)
fun maxl’ [] = raise Empty

| maxl’ [n] = n

| maxl’ (n::m::ns) = maxl’ (Int.max(n,m)::ns)

@ As seen in this example, reducing a list by a dyadic operation is a recurring task.

@ They have in common, that we need to get one value from n values, that’s why we’re talking about
reduction.

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

FP-1..12-79

Reduction of a list by dyadic operations (foldr, foldl)

@ A dyadic operation (more precisely, a function of prefix position, applicable to a pair) is
performed on a list from right to left by foldr, from left to right by foldl. Examples for
computing sum and product:

foldr op* 1.0 [] = 1.0; foldl op+ 0 [] = 05
foldr op* 1.0 [4.0] = 4.0; foldl op+ 0 [4] = 4;
foldr op* 1.0 [1.0, 2.0, 3.0, 4.0] = 24.0; foldl op+ O [1, 2, 3, 4] = 10;

@ Let & denote an arbitrary dyadic infix operator. Then

foldr op® e [X1, X2, ..y Xp] = (X1 @ (X0 DB ... D (x, D) ...))
foldr op® e [] = e
foldl op® e [xX1, X9, ..., Xp] = (X, & ... @ (X9 & (x1 D €)) ...)
foldl op® e [] = e

@ The operand e of operation & acts as the (right) identity element in some frequently used

operations such as addition, multiplication, conjunction (logical “and”), and alternation (logical
”OI‘” .

@ In the case of associative operations, the results of foldr and fold1 are identical.

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

FP-1..12-80

Examples for using foldr and foldl

@ i sum returns the sum of an integer list, rprod returns the product of a real list.

val isum = foldr op+ O; val rprod = foldr op* 1.0;
val isum = foldl op+ O0; val rprod = foldl op* 1.0;

@ The 1ength function can also be defined by foldl or foldr. As dyadic operation we use an
auxiliary function that doesn’t use its first parameter.

(* inc : ’'a * int -> int
inc (_, n) = n + 1 *)
fun inc (_, n) = n + 1;

(* lengthl, lengthr : 'a list -> int *)
val lengthl = fn 1ls => foldl inc 0 1ls;
fun lengthr 1s = foldr inc 0 1ls;

val lengthl = foldl inc 0;

lengthl (explode "tengertanc");
lengthr (explode "hajdu sogor");

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

FP-1..12-81

List: The definition of foldr and foldl

@ foldr op® e [x1, X2, «-vy Xpl = (X1 @ (X2 D ... © (%X, B €) ...))
foldr op® e [] = e

(* foldr £ e xs = the result of the dyadic operation f with
identity element e, applied to the elements
of xs, proceeding from right to left

foldr : ('a * '"b =—> '"b) —> 'b —> ’'a list —-> 'b *)
fun foldr £ e (x::xs) = f(x, foldr f e xs)
| foldr £ e [] = e;
@ foldl Op@ e [Xlr X7 e ey Xn] = (Xn @ ... D (X2 © (Xl G e)) ...)
foldl op® e [] = e

(* foldl £ e xs = the result of the dyadic operation f with
identity element e, applied to the elements
of xs, proceeding from left to right

foldl : (’a * 'b => 'b) -> 'b -> 'a list -> ’'b *)
fun foldl f e (x::xs) = foldl £ (f(x, e)) xs
| foldl f e [] = e;

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

FP-1..12-82

Further examples for using foldr and foldl

@ foldr and foldl appends elements of one list before another when the constructor function
cons, 1.e. op: : 1s used as the dyadic operation.

foldr op:: ys [X1, X2, X3] = (X1 :: (X9 :: (X3 :: vys)))

foldl op:: ys [X1, X2, X3] = (X3 :: (X9 :: (X1 :: vys)))
@ :: is not associative, so the results of foldl and foldr are different!

(* append : ’'a list —> ’'a list —-> ’'a 1list

append xs ys = list obtained by appending xs before ys *)
fun append xs ys = foldr op:: ys xXsj;

(* revApp : ’'a list -> 'a list -> 'a list
revApp xs ys = list obtained by appending
the reversed xs before ys *)
fun revApp xs ys = foldl op:: ys xs;

append [1, 2, 31 [4, 5, 6] = 1[1, 2, 3, 4, 5, 6]; (cf. Prolog: append)
revApp [1, 2, 3] [4, 5, 6] = [3, 2, 1, 4, 5, 6]; (ctf. Prolog: revapp)

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

FP-1..12-83

Further examples for using foldr and foldl

@ Two implementations of max1
(* maxl : ('a * 'a -> ’'a) —> 'a list -> 'a

maxl max ns = maximal element of the list ns according to max
*)

(* non—-tail-recursive *)

fun maxl max [] = raise Empty
| maxl max (n::ns) = foldr max n ns

(* tail-recursive *)

fun maxl’ max [= raise Empty

]
| maxl’ max (n::ns) = foldl max n ns

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

FP-1..12-84

Example for using lists: creating runs

@ Run is a list whose elements satisfy a given condition.

@ The given condition is passed to the function creating the run as a predicate to be applied to the
previous and current element.

@ Our task: to write an SML function that returns a list of runs composed of subsequent elements of
a list (preserving the original sequence of elements).

@ In the first version, we write an auxiliary function to create the first (prefix) run of a list, and
another one to create the rest of the list.

@ The auxiliary function run has two arguments: the first one is a predicate implementing the
desired condition, the second one is a pair. The first member of the pair is the previous element,
the second member is the list whose run beginning with the previous element run must create.

@ The two arguments of the auxiliary function rest are the same as the arguments of run. It must
return the list it obtains by removing the first run from the list passed as the second member of the
pair.

@ On the next slides, the auxiliary functions run and rest, as well as different versions of the
function runs can be seen.

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

Example for using lists: creating runs (cont’d.)

@ First version: creating run and rest with two functions

(* run : ('a * 'a —> bool) -> ('a * ’a list) —-> ’'a 1list

run p (x, ys) = the first (prefix) run of x::ys satisfying p *)
fun run p (x, []) = [x]

| run p (x, y::ys) = 1f p(x, y) then x :: run p (y, ys) else [x]
(* rest : ('a * 'a —> bool) -> ('a * 'a list) -> ’'a list

rest p (x, ys) = the rest of x::ys after its run satisfying p *)

fun rest p (x, []) = []
| rest p (X, yys as y::ys) =
if p(x ,y) then rest p (y, ys) else yys

(* runsl : ('a * "a —> bool) —-> ’'a list —-> ’a list 1list
runsl p xs = list consisting of runs of xs satisfying p *)
fun runsl p [] = []
| runsl p (x::xs) =
let val rns = run p (x, Xs)
val rts = rest p (x, xS)
in
if null rts then [rns] else rns :: runsl p rts
end

FP-1..12-85

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

FP-1..12-86

Example for using lists: creating runs (cont’d.)

@ Factors decreasing efficiency

l. runs1 goes through the list twice: first run, then rest,
2. though p never changes, it is passed as a parameter to run and rest,

3. none of the functions uses an accumulator.
@ Ways to improve
. run should return a pair, with the run as the first element and the rest as the second; we should

use an accumulator for collecting the elements of the run,

2. run should be local inside runs1,
3.thetext if null rts then [rns] else can be deleted: the recursion terminates at the
next call anyway.

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

FP-1..12-87

Example for using lists: creating runs (cont’d.)

@ Second version: creating run and rest with one local function

(* runs2 : ('a * 'a -> bool) -> ’'a list -> ’a list 1list
runs2 p xs = list consisting of runs of xs satisfying p
*)
fun runs2 p [] = []
| runs2 p (x::xs) =
let (* run : ('a * 'a list) —-> 'a list * ’'a list
run (x, ys) zs = a palr with first member being the first
(prefix) run of x::ys satisfying p, appended
before zs, second member being the rest of x::ys

*)

fun run (x, []) zs = (rev(x::zs), [])
| run (x, yys as y::ys) zs = if p(x, vy)
then run (y, ys) (x::zs)
else (rev(x::zs), Vyys);

val (fs, ms) = run (x, xs) []
in

fs :: runs2 p ms
end

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

FP-1..12-88

Example for using lists: creating runs (cont’d.)

@ Third versoin: collecting each run and the list of runs as well

(* runs3 : ('a * 'a —> bool) -> ’'a list -> ’a list 1list
runs3 p xs = list consisting of runs of xs satisfying p
*)
fun runs3 p [] = []
| runs3 p (x::xs) =
let (* runs : ('a * 'a list) -> ’'a list -> ’'a list * ’a list
runs (x, ys) zs zss = a list consisting of runs of x::ys

satisfying p, appended before zzs
*)
fun runs (x, []) zZs zss = rev(rev(x::zs8)::2s8)

| runs (X, yysS as y::ys) zZS zSs =

if p(x, y)
then runs (y, ys) (x::zs) zss
else runs (y, ys) [] (rev(x::zs)::zss)
in
runs (x, xs) [] []
end;

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

FP-1..12-89

Example for using lists: creating runs (cont’d.)

@ Examples for applying the functions:

run op<= (1, [9,19,3,4,24,34,4,11,45,66,13,45,66,99]) =
[1,9,19];

rest op<= (1, [9,19,3,4,24,34,4,11,45,606,13,45,66,99]) =
[3,4,24,34,4,11,45,66,13,45,66,99];

runsl op<= [1,9,19,3,4,24,34,4,11,45,66,13,45,66,99] =
[(1,9,19], [3,4,24,34], [4,11,45,66], [13,45,66,99]];

runsl op<= [99,1] = [[99], [1]];
runsl op<= [99] = [[99]];

runsl op<= [] = [];

Deklarativ programozas. BME VIK, 2004. &szi félév (Funkcionélis programozas)

