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Declarative Programming: Information

Homepage, Mailing-list
@ Homepage: <http://dp.iit.bnme. hu>

@ Mailing-list: <ht t p: //www. iit. bne. hu/ mail man/listinfo/dp-1>.
Mails to the list members have to be sent to <dp- | @wwv. i i t. bne. hu>.
Only list members’ mail arrives to others without moderator approval.

Lecture Notes

@ Szeredi, Péter and Benk0, Tamas: Declarative Programming. Introduction to logic
programming (in Hungarian)

@ Hanak, D. Péter: Declarative Programming. Introduction to functional programming (in
Hungarian)

@ Electronic version is available on the homepage (ps, pdf)
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Declarative Programming: Information (cont.)

Compiler and Interpreter

@ SICStus Prolog — version 3.12 (license may be requested through the ETS)
@ Moscow SML (2.0, freeware)

@ Both of them are installed on kenpel en. i nf . bne. hu.

@ Both of them can be downloaded from the homepage (linux, Win95/98/NT)
@ Exercising/tutoring through ETS on the Web (see homepage)

@ System manuals in HTML and PDF format

@ Other programs: swiProlog, gnuProlog, poly/ML, sminj

@ emacs-wordprocessor has SML and Prolog mode (linux, Win95/98/NT)
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Declarative Programming: Requirements during the Semester

Big HomeWork (BHW)

@ In both programming language (Prolog, SML)
@ Work independently!
@ Programs should be efficient (time limit!), well documented (with comments)

@ Developer documentation: 5-10 pages, for both programming languages (TXT, TEX/IATEX,
HTML, PDF, PS; BUT NOT DOC or RTF)

@ Announced in the 6th week, on the homepage, with downloadable framework
@ Deadline in the 12th week; submission in electronic format (see homepage)

@ The test-cases handed out and the test cases used at scoring are not the same, but of similar
difficulty

@ The programs which perfectly solve all the test cases, participate in a ladder competition
(winners get additional points)
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Declarative Programming: Requirements during the Semester (cont.)

Big HomeWork (cont.)

@ optional, but very much recommended!

@ Can also be handed in if solved only in one programming language

@ Until the deadline homeworks can be handed in several times, only the last one is scored
@ Scoring (for both languages):

@ Each of the 10 test cases, which run correctly and within the time limit earns 0.5 points/test
case, max 5. points in total, if at least 4 cases are correct
@ for the documentation, the readability of the code and comments max. 2,5 points

@ That means max. 7,5 total points/language
@ The weight of the BHW in the final mark: 15% (15 points from 100 points)
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Declarative Programming: Requirements during the Semester (cont.)

Small HomeWork (SHW)
@ 2-3 exercises from both Prolog and from SML
@ Handing in: electronically (see homepage)
@ Optional, but very much recommended

@ Every good solution earns 1 additional point

Using the Web Exercising system

@ Optional, but indispensable for the successful midterm-test and exam!

@ Embedded in the ETS system (see homepage)
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Declarative Programming: Requirements during the Semester (cont.)

Midterm-test, Supplementary Midterm-test (MTT, SMTT, SSMTT)

@ The midterm-test is mandatory, closed book test!

@ Rule of 40% (for the pass, minimum 40%/language has to be obtained).
Exception: those students who have already obtained a signature.

@ The MTT is in the 7th-10th week, the SMTT is in the last week of the semester

@ A single opportunity for SSMTT (in reasonable case) will be given in the first three weeks of the
exam-period

@ The material covered by the MTT is the first two blocks (1th-7th week)
@ The material covered by the SMTT and. the SSMTT is the same as that of the MTT
@ The test weights 15% (15 points from 100 points ) in the final mark

@ If more tests are written the highest score is valid
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Declarative Programming: Exam

Exam

@ Those students can sign in to the exam, who have already got a signature in the given semester,
or up to 4 semesters before

@ The exam is oral, with preparation in writing
@ Prolog, SML.: Several smaller tests (program-coding, -analyzing) for 2x35 points

@ The final points obtained are the sum of the following: the max. 70 points got in the exam, plus
the points got in the present semester: for MTT: max. 15 points, for BHW: max. 15 points, plus
the additional points (SHW, ladder-competition)

@ \We do not accept points from earlier semesters!

@ The exam is closed-book exam, but it is possible to ask for some help

@ \We check the “authenticity” of the BHW and MTT

@ Rule of 40% (for the pass minimum 40%/language have to be obtained)

@ Earlier exam questions are available on homepage
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Classification of Programming Languages

Programming languages — styles

T T

Imperative Declarative
Fortran / \
Algol _ :
c Functional Languages Logic Languages
C++ LISP L
ML Prolog

CLP languages
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Imperative and Declarative Programming Languages

@ Imperative Program

@ Imperative style, using commands
@ Variables: the value of a variable can be modified
@ example in C:
int pow(int a, int n) { // pow(a,n) = a ™ n

int p = 1; // Let p be 11!
while (n > 0) { // Repeat until n>0 :

n = n-1; // Decrease n by 1!

p = p*a; } // Multiply p by al
return p; } // Return the value of p

@ Declarative Program

@ Declarative style, equations and statements
@ Variable: has a single value, unknown at program writing time

@ SML example :

fun pow(a, n) =
ifn>0 G Ifn>0%)
then a*pow(a,n-1) (* then a™n = a*a™(n-1) *)
else 1 (* else a™n =1 %)
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DP-13

@ It is possible to program in C in a declarative way

@ If we do not use: assignments, loops, jumps, etc.,
@ One can use: (recursive) functions, if-then-else

@ The powd is a declarative version of the pow function:

/* powd(a,n) = a™ */ int powd(int a, int n) {

it (n >0) /* 1fn>0%*

return a*powd(a,n-1); /* then a™n = a*a™(n-1) */
else

return 1; /* else a™n =1 */

}

@ The (above type of) recursion is expensive, requires non-constant memory :-(.
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Efficient Declarative Programming

@ The recursion can be efficiently implemented under certain conditions

@ Example: Decide, if an a natural number is a power of a number b:

/* ispow(a,b) = 1 <=> exits i, such that b’ = a. Precondition: a,b > 0 */
int ispow(int a, int b) {
/* again: */

if (a==1) return 1;
else 1f (a%b == 0) return ispow(asb, b); /* a = a/b; goto again; */
else return O;
by
@ Here the recursive call can be implemented as the assignment and jump shown in the
comment!

@ This can be done, because after the return from the recursive call, we immediately exit the
function call.

@ This kind of function invocation is called tail recursion, right recursion or terminal recursion

@ The Gnu C compiler with a sufficient optimization level (gcc -02) generates the same code
from the recursive definition as from the non-recursive one!
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Tail Recursive Functions

@ Is it possible to write a tail recursive code for the exponentiation (pow(a,n)) task?

@ The problem is that a tail recursive function cannot modify the result of the returning
recursive call, in other words, the final result has to be available inside the last call.

@ The solution: define an auxiliary function, which has an additional argument, a so called
accumulator.

@ Tail recursive implementation of pow(a,n):

/* Auxiliary function: powa(a, n, p) = p*a™n */
int powa(int a,int n, int p) {
it (n > 0)
return powa(a, n-1, p*a);
else
return p;

}

int powr(int a, int n){
return powa(a, n, 1);

}
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Cékla: A Declarative part of the C programming language

@ Limitations:

@ Types: only int

@ Commands: if-then-else, return, block

@ Condition part: ( (exp) (compare-op) (exp))
@ (compare-op):i< | > | == | \=] >= | <=

@ Expressions: built from variables and integers using binary operators and function calls
@ (arithmetical-op): + 1 - | * 1 71 % 1

@ The Cékla compiler is available on the homepage
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The Syntax of the Cékla Language

@ the syntax uses the so called DCG (Definite Clause Grammar) notation:

@ terminal symbol: [terminal]
@ non-terminal symbol: non_terminal
@ repetition (0, 1, or more repetitions, not in DCG): (to be repeated). ..

@ The syntax of program

program -->
function_definition -->
head -->

type -->

formal_args -->

formal _arg -->

block -->

declaration -->
declaration_elem -->

function_definition...

head, block.

type, identifier, [7(’], formal _args, [7)’]-

[int].

formal _arg, ([",'"], formal _arg)... ; [1-

type, i1dentifier.

[’{°], declaration..., statement..., ["}’]-

type, declaration_elem, declaration_elem..., [7;7]-
identifier, [’="], expression.
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Syntax of Cékla, Continued
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@ Syntax of Commands

statement -->

[1f], test, statement, optional else part

: block

optional _else part -->
test -->

@ Syntax of Expressions

expression -->
term -->
factor -->

constant -->

actual _args -->
comparison_op -->
additive op -->
multiplicative op -->

[return], expression, [7;7]

[:71-

[else], statement ; []-

[C]., expression, comparison_op, expression, [7)’].-

term, (additive _op, term)...
factor, (multiplicative op, factor)...

identifier

identifier, [°(C], actual_args, [7)’]
constant

[C]., expression, [7)’].-

integer.

expression, ([7,”], expression)... ; [1-

[<"1 : [>7] : [=="1 : ['\="] - [*>="] : ["<="1.
[’+’1 ; [*-"1-
>*’1: 07771 : ["%°1].
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1st Small Homework

@ Considering an integer as a sequence of digits, its reverse can be defined as the integer
consisting of the same sequence of digits in reverse order.
@ |f the original ineger has n digits, then its reverse has n digits, too.
@ For example: the reverse of 86345 is 54368.

@ A program is to be written in the Cékla language which calculates the reverse of a given integer.

@ The main function should be: reverse(a) = b, meaning: b is the reverse of a.
@ Examples:

@ reverse(534) = 435

@ reverse(9026) = 6209

@ reverse(86345) = 54368
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A Somewhat More Complicated Cekla Program

@ The task: Convert a decimal number num — which is between 0 and 1023 — to a 10 digit
decimal number containing only digits 0 and 1, so that when this sequence of digits is
interpreted as a binary number, its value is num. Eg. bin(5) = 101, bin(37) = 100101.

@ Solution in (imperative) C and in Cékla:
int bin(int num) {
int bp = 512;
int dp = 1000000000;
int bin = 0;
while (bp > 0) {
iIT (num >= bp) {
num-bp;
bin+dp;

>
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3
T

o
©
i
o
©

/ 2;

dp /7 10;
it (hum > 0)
return -1;

else
return bin;

}

int bina(int num,
int bp,
int dp,
int bin) {
it (bp > 0) {
iIT (num >= bp)
return bina(num-bp,bp/2,dp/10,bin+dp);
else
return bina(num, bp/2,dp/10,bin);
}
it (num > 0)
return -1;
else
return bin;
+
int bind(int num) {
return bina(num, 512, 1000000000,0); }
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Declarative Programming Languages — Lessons Learned from Ceékla

@ What have we lost?

@ the mutable variables (variables whose value can be changed),
@ the assignment, loop, etc. statements
@ in general: a changeable state

@ How can we handle state in a declarative way?

@ the state can be stored in the parameters of the (auxiliary) functions,
@ the change of the state (or keeping the state unchanged) has to be explicit!

@ What have we won?

@ Stateless Semantics: the meaning of a language element does not depend on a state

@ Referential transparency — eg. if f(x) = 22, then f(a) substitutable with a.
@ Single assignment — parallel execution made easy.

@ The declarative programs are decomposable:

@ The parts of the program can be written, tested and verified independently
@ |t is easy to make deductions regarding the program eg. proving its correctness.
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Declarative Programming Languages — Motto

@ WHAT rather than HOW: The program describes the task to be solved (WHAT to solve), rather
than the exact steps of solution process (HOW to solve).

@ |n practice both aspects have to be taken care of — dual semantics:

@ Declarative semantics — What (what kind of task) does the program solve;
@ Procedural semantics — How does the program solve it.
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Declarative Programming — Why do We Teach it?

@ New, high-level programming elements

@ recursion
@ pattern matching
@ backtracking

@ New way of thinking

@ decomposable programs: parts of a program (relations, functions) have independent meaning
@ verifiable programs: the code and the meaning of a program can be compared.

@ New application areas

@ symbolic application
@ tasks requiring deduction
@ high reliability software systems
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An Example dialog with a 50-line Prolog program

(Translation from Hungarian.)

| ?- dialog.

| : 1 am a Hungarian lad.
Under st ood.

| : Who am 17

Hungari an | ad

| : Who 1s Péter?

| do not know.

| . Péter is student.
Under st ood.

| . Péter i1s smart student.
Under st ood.

| : Who i1s Péter?

st udent

smart student

| - I am happy.-
Under st ood.

| : You are a Prolog program.
Under st ood.

| : Who am 17
Hungari an | ad
happy

| : You are clever.
Under st ood.

| : You are the center of the world.
Under st ood.

| : Who are You?

a Prol og program

cl ever

the center of the world
| : Really?

| do not under st and.

| : 1 am fed up with You.
So am .
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The Basic Idea of Logic Programming

@ Logic Programming (LP):

@ Programming using mathematical logic
@ a logic program is a set of logic statements
@ the execution of a logic program is a deductive process
@ But: the deduction in (first order) logic requires the traversal of a huge search space
@ | et us restrict the language of the logic
@ Select a simple deduction algorithm, which can be followed by humans
@ The most widespread implementation of LP is the Prolog language: Programming in logic

@ a severely restricted sublanguage of the first order predicate logic, the so called definite or
Horn-clause language

@ Execution mechanism: pattern matching directed procedure invocation with
backtracking search.
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The Outline of the LP Part of the Course

@ Block 1: The basics of Prolog programming langauge (6 lectures)

@ Logic background
@ Syntax
@ Execution mechanism

@ Block 2: Prolog programming methods (6 lectures)

@ The most important built-in procedures
@ Advanced language and system elements

@ Outlook: New directions in logic programming (1 lecture)
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Short Historical Overview of Prolog/LP

60s
1970-72
1972
1975
1977
1977-79
1981

1982

1983

1986

1987-89
1990-...

Early theorem proving programs

The theoretical basis of logic programming (R A Kowalski)
The first Prolog interpreter (A Colmerauer)

The second Prolog interpreter (P Szeredi)

The first Prolog compiler (D H D Warren)

Several experimental Prolog applications in Hungary

The Japanese 5th Generation Project chooses logic
programming

The Hungarian MProlog is one of the first commercial Prolog
implementations

A new compiler model and abstract Prolog machine (WAM)
appears (D H D Warren)

The beginning of the Prolog standardization

New logic programming languages (CLP, GOdel etc.)

Prolog appears on parallel computers

Highly-efficient Prolog compilers

LP-28
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Information about Logic Programming

@ Prolog implementations:

@ SWI Prolog: http://www._swi-prolog.org/
@ SICStus Prolog: http://www.sics.se/sicstus

@ GNU Prolog: http://pauillac.inria.fr/~diaz/gnu-prolog/
@ Network information sources:

@ The WWW Virtual Library: Logic Programming:
http://www.afm.sbu.ac.uk/logic-prog

@ CMU Prolog Repository:
(within http://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/lang/prolog/)
@ Main page: 0.html
@ Prolog FAQ: fag/prolog.faq
@ Prolog Resource Guide: fag/prg_1.faq, fag/prg_2.faq
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EMPTY

This page is intentionally left blank.
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English Textbooks on Prolog

@ Logic, Programming and Prolog, 2nd Ed., by UIf Nilsson and Jan Maluszynski, Previously
published by John Wiley & Sons Ltd. (1995)

Downloadable as a pdf file fromhtt p: //www. i da. i u. se/~ul fni/lpp

@ Prolog Programming for Artificial Intelligence, 3rd Ed., Ivan Bratko, Longman, Paperback -
March 2000

@ The Art of PROLOG: Advanced Programming Techniques, Leon Sterling, Ehud Shapiro, The
MIT Press, Paperback - April 1994

@ Programming in PROLOG: Using the 1SO Standard, C.S. Mellish, W.F. Clocksin,
Springer-Verlag Berlin, Paperback - July 2003
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Our first Prolog program: checking if a number is a power of another

@ A simple example in Cékla and Prolog:

/* ispow(a,b) = 1 <=> exits i, such that b’ = a. Precondition: a,b > 0 */

int ispow(int num, Int base) { ispow(Num, Base) :-
iIf (num == 1) ( Num =:= 1
return 1; -> true
else 1T (hum¥%base == 0) ; Num rem Base =:= 0,
return ispow(num/base, base); Numl §s Num//Base,
else ispow(Numl, Base)
return O; )-
+

@ ispow is a Prolog predicate, that is a procedure (function) returning a Boolean value.
@ The procedure consists of a single clause, of form Head : -Body.
@ The head contains the parameters Num and Base which are variables (written in capitals!)

@ The body consists of a single goal which is a conditional structure:
1T Cond then ThenCode else ElseCode = ( Cond -> ThenCode ; ElseCode )

@ The “true”, “A =:= B” and “A is B” structures are calls of built-in predicates.
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Some Built-In Predicates

@ Unification: X =Y: The X and Y symbolic expressions can be brought to the same form, by
instantiating variables (and carries out these instantiations).

@ Arithmetic predicates

@ X is Exp: The arithmetic expression Exp is evaluated and its value is unified with X.

@ Expl<Exp2, Expl=<Exp2, EXpl>Exp2, Expl>=Exp2, Expl=:=Exp2, Expl=\=Exp2:
The values of arithmetic expressions Expl and Exp2 are in the given relation with each other
(=:=means arithmetic equality, =\= means arithmetic inequality).

@ |fany of Exp, Expl or Exp2is nota ground (variable-free) arithmetic expressions =-error.

@ the most important arithmetic operators +, -, *, 7/, rem, // (integer-div)

@ OQutput predicates

@ write(X): The Prolog expression X is written out (displayed on the screen).
@ nl: A new line is written out.

@ Other predicates

@ true, fail: Always succeeds vs. always fails.
@ trace, notrace: Turns (exhaustive) tracing on/off.
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Built-In Predicates for Program Development

@ consult(File) or [File]: Reads the program from the File and stores it in interpreted
format. (if File = user = read from the terminal)

@ listingor listing(Predicate): Lists all interpreted predicates, or all interpreted predicates
with the given name.

@ compile(File): Reads the program from the File and compiles it.
@ The compiled format is faster, but cannot be listed, and tracing is slightly less accurate.

@ halt: Exit the Prolog system.

> sicstus

SICStus 3.11.0 (x86-1inux-glibc2.3): Mon Oct 20 15:59:37 CEST 2003
| ?- consult(ispow).

% consulted /home/user/ispow.pl in module user, O msec 376 bytes
yes

| ?- ispow(8, 3).

no

| ?- 1spow(8, 2).

yes

| ?- listing(ispow).

-2

yes

| ?- halt.

>
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Writing General (non Boole-valued) Functions in Prolog

@ Example: Calculating the power of a natural number in Cékla and Prolog:

/* powd(a,n) = a™n */ /* powd(A, N, P): AN = P. */
int powd(int a, Int n) { powd(A, N, P) :-
if (n >0) ( N>O
return a*powd(a,n-1); -> N1 1s N-1,
powd(A, N1, P1),
P is A*P1
else ; P=1
return 1; ).
+

| ?- powd(2, 8, P).
P = 256 ?

@ The predicate powd with 3 arguments corresponds to thepowd function with 2 arguments.

@ The two arguments of the function correspond to the first two arguments of the predicate, which
are input i.e. instantiated arguments.

@ The result of the function is the last, output argument of the predicate, which is usually an
uninstantiated variable.
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Predicates with Multiple Clauses

@ The conditional structure is not a basic element of the Prolog language (it was not there in the
first Prologs)

@ Instead a conditional a predicate with two, mutually exclusive clauses can be used:
/* powd(A, N, P): AN = P. */

powd(A, N, P) :- powd2(A, N, P) :-
( N >0 N >0,
-> N1 is N-1, N1 is N-1,
powd(A, N1, P1), powd2(A, N1, P1),
P i1s A*P1 P 1s A*P1.
; P=1 powd2(A, N, 1) :-
). N =< 0.

@ |f a predicate has multiple clauses, Prolog tries all of them :

@ If the 2nd parameter of powd2 (N) is positive, then the first clause is used,
@ otherwise (i.e. if N =< 0) the second one.

@ |f the second clause of powd2 is: powd(A,0,1), then a call with a negative exponent fails.

@ In general the clauses need not be exclusive: a single question can lead to multiple answers:

equation_root(A, B, C, X) - X 1s (-B + sqrt(B*B-4*A*C))/(2*A).
equation_root(A, B, C, X) - X 1s (-B - sqgrt(B*B-4*A*C))/(2*A).
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Predicates with Multiple Answers — Family Relationships

@ Data

A child—parent relation, eg. family relations in the family of King Stephen I, the first king of

Hungary:
child | parent
Imre Istvan
Imre Gizella
Istvan | Géza
Istvan | Sarolta
Gizella | Civakodo Henrik
Gizella | Burgundi Gizella
@ The task:

We have to define the grandchild—grandparent relation, i.e. write a program which finds the
grandparents of a given person.
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The Grandparent Problem — Prolog Solution
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% parent(C, P):P is a parent of C
parent(’ Imre”, ’lIstvan’).
parent(’Imre”, *Gizella’).
parent(’Istvan’, ’Géza’).
parent(’ Istvan’, ’Sarolt”).

parent(’Gizella’, “Civakodd Henrik?).
parent(’Gizella”, ’Burgundi Gizella’).

% Grandparent i s a grandparent of

grandparent(Child, Grandparent) :-
parent(Child, Parent),
parent(Parent, Grandparent).

Child.

% Who are Imre’ s grandparents?
| ?- grandparent(’Imre’, GP).
GP = “Géza” ? ;

GP = *Sarolt” ? ;

GP = ’Civakod6 Henrik” ? ;

GP = ?Burgundi Gizella” ? ; no
% Who are Géza' s grandchil dren?
| ?- grandparent(GC, *Géza’).
GC = ’Imre” ? ; no
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@ The binary tree data structure is

@ either a node (node) which contains two subtrees (1eft, right)

@ or a leaf (1eaf) which contains an integer

@ Let us define binary tree structures in different languages:

% Decl aration of a structure in C

enum treetype Node, Leaf; struct tree {
enum treetype type;
union {
struct { struct tree *left;
struct tree *right;

} node;
struct { int value;
} leaf;
3 u;
};

% Data type declaration in SM
datatype Tree =

Node of Tree * Tree
| Leaf of iInt

% Data type description in Prol og

- type tree --->
node(tree, tree)
| leaf(int).
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Calculating the Sum of a Binary Tree

@ To calculate the sum of the leaves of a binary tree:

@ if the tree is a node, add the sums of the two subtrees
@ if the tree is a leaf, return the integer in the leaf

% C function (declarative) % Prol og procedure (predicate)
Int sum_tree(struct tree *tree) { sum_tree(leaf(Value), Value).
switch(tree->type) { sum_tree(node(Left,Right), S) :-
case Leaf: sum_tree(Left, S1),
return tree->u.leaf.value; sum_tree(Right, S2),
case Node: S Is S1+S2.
return
sum_tree(tree->u.node.left) +
sum_tree(tree->u.node.right);
}
+
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Sum of Binary Trees

@ Prolog sample run:

% sicstus -T
SICStus 3.10.0 (x86-11nux-glibc2.1): Tue Dec 17 15:12:52 CET 2002
Licensed to BUTE DP course
| ?- consult(tree).
% consulting /home/szeredi/peldak/tree._pl. ..
% consulted /home/szeredi/peldak/tree.pl in module user, 0 msec 704 bytes
yes
| ?- sum_tree(node(leaf(b),
node(leaf(3), leaf(2))), Sum).
Sum = 10 ? ;
no
| ?- sum_tree(Tree, 10).
Tree = leaf(10) ? ;
I Instantiation error In argument 2 of 1s/2
I goal: 10 1s 73+ 74
| ?- halt.
%

@ The cause of the error: the built-in arithmetic is one-way: the 10 is S1+S2 call causes an error!
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@ \We can define the addition for natural numbers using Peano axioms if the numbers are built by
repeated application of the s(X) ,,successor” function:

1 = s(0), 2 = s(s(0)), 3 = s(s(s(0))),

% plus(X, Y, Z2): The sum of X and Y 1s Z (X,Y,Z are in Peano representation).
% 0+X = X.

plus(0, X, X).

plus(s(X), Y, s(2)) :-
plus(X, Y, 2).

- .. (Peano representation).

% s(X)+Y = s(X+Y).

@ The plus predicate can be used in multiple directions:

| ?- plus(s(0), s(s(0)), 2).
| ?- plus(s(0), Y, s(s(s(0)))).-

| ?- plus(X, Y, s(s(0)))-

Z

Y

X X X

s(s(s(0))) ? ;
s(s(0)) ? ; no
0, Y = s(s(0))

s(0), Y =s(0)
s(s(0)), Y=0

?

%
%
%

%
%

1+2 = 3

NN

0+2
1+1
2+0
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Building Trees with a Given Sum

@ Building a tree with a given sum, using Peano arithmetic:

sum_tree(leaf(Value), Value).
sum_tree(node(Left, Right), S) :-

plus(S1, S2, S),
S1 \= 0, S2 \= 0, % X \=Y built-in procedure, meaning
% X and Y cannot be unified
% 0O excluded, to avoid oo many solutions.
sum_tree(Left, S1),
sum_tree(Right, S2).

@ the running of the procedure:

| 7-
Tree
Tree
Tree
Tree
Tree
no

sum_tree(Tree, s(s(s(0)))).

= leaf(s(s(s(0)))) ? ; % 3

= node(leaf(s(0)),leaf(s(s(0)))) ? ; % (1+2)

= node(leaf(s(0)),node(leaf(s(0)),leaf(s(0)))) ? ; % (1+(1+1))
= node(leaf(s(s(0))),leaf(s(0))) ? ; % (2+1)

= node(nhode(leaf(s(0)),leaf(s(0))),leaf(s(0))) ? ; % ((1+1)+1)
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The Data Structure of Prolog, the Notion of Term

@ constant (atomic)

@ number: numeric constant (number) — integer or float, eg. 1, -2.3, 3.0e10
@ name: symbolic constant (atom), eg. Istvan”, ispow, +, -, <, sum_tree

@ compound or structure (compound)

@ so called canonical form: ( name of structure ) ({arg, ), ...)

@ the (name of structure ) is an atom, the ( arg; ) arguments are arbitrary Prolog terms

@ examples: leaf(1), person(william,smith,2003,1,22), <(X,Y), is(X, +(Y,1))
@ syntactic sugar, ie. operators: X is Y+1 = is(X, +(Y,1))

@ Variable (var)

@ eg. X, Parent, X2, _var, 123

@ The variable is initially uninstantiated, ie. it has no value, it can be instantiated to an arbitrary
Prolog term (including another variable), in the process of unification (pattern matching)
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Predicates, clauses
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@ Example:

% A definition of the predicate with
sum_tree(leaf(val), Vval).
sum_tree(node(Left,Right), S) :-

sum_tree(Left, S1),
sum_tree(Right, S2),
S is S1+S2.
@ Syntax:
(Prolog progran) ::= (predicate) ...
( predicate ) = (clause) ...
(clause) = (fact).o|
(rule)..,
(fact) ::= (head)
(rule) := (head) :- (body )
(body ) (goal), ...
(goal) (term)
(head ) = (term)

two clauses, the functor is: sum tree/2

% 1. clause, fact
% head \
% goal \ |
% goal | body | 2. clause, rule
% goal / /

{with the same functor}

{functor of the clause = functor of the head}
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Recommended formatting of Prolog programs

@ The recommended formatting of Prolog programs:

@ Place clauses of a predicate one after the other, do not put empty lines between them.
Separate predicates by empty lines and possibly comments.

@ Write the head of the clause at the beginning of a line, and prefix each goal in the body with
an indentation of a few (8 recommended) spaces. Preferably write the head and each goal on
separate lines.
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Prolog terms

@ Example — a clause head as a term:

% sum_tree(node(Left,Right), S) % compound term, functor Is sum_tree/2
%
% | | 1
% structure name | argument, variable
% \- argument, compound term
@ Syntax:
(term) ;= (variable) | {no functor}
(constant) | {Functor: ( constant)/ 0}
(compound term) |  {Functor: (structure name )/ (arity )}
( (term)) {Because of operators, see later}
( constant ) ::= (name constant) | {also called (atom )}
( number constant )
( number constant) ::= (integer) |
( float number )
(compound term) ::= (structure name) ( (argument),...)
(structure name) = (name constant)
(argument ) = (term)
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Lexical elements

@ Examples:
% variable: Fact FACT fact X2 2
% name constant (atom): fact = “fact” ’lIstvan” [] ; 7,7 += ** \= = *\\=~
% number constant: 0 -123 10.0 -12.1e8
% not a name constant: 1=, Istvan

% not a number constant: 1e8 1.e2

@ Syntax:
(variable ) .= (capital letter ) ( alphanumeric char). . .|
_ (alphanumeric char ). ..
( name constant ) ::= ' (quoted character)...’ |
( lower case letter ) ( alphanumeric char). . .|
(sticky char)...|V |; [[1 1{}
( integer ) ::= {signed or unsigned digit sequence }

{ a sequence of digits with a compulsory decimal point
in between, with an optional exponent}

( float number )

(quoted character) ::= {anynon’ and non\ character} |\ (escape sequence)
(alphanumeric char) ::= (lower case letter) | ( upper case letter) | (digit) | _
(sticky char ) = - [* VSN <= =]" [~ ] (7@ #| &
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Syntactic sugar: operators

@ Example:
% S 1s -S1+S2 1s equivalent to the term: i1s(S, +(-(51),S52))

@ Terms with operators
( compound term ) ::=
( structure name ) ( (argument), ...) {until now we had only this}

| (argument) ( operator name ) (argument) ( infix term )
| (operator name ) (argument ) ( prefix term )
| (argument) ( operator name ) ( postfix term )
( operator name ) ::= ( structure name ) {if declared as an operator}

@ Built-in predicates handling operators:

@ op(Priority, Type, OpName) or op(Priority, Type, [OpName,,OpName,,...]):
@ Priority: integer between 0-1200

@ Type: yfx, xfy, xfx, fy, Fx, yf, xf - one of these name constants
@ OpName: any symbolic constant

@ If priority is positive the operator(s) are defined, if it is O they are deleted.
@ current_op(Priority, Type, OpName): lists the current operators.
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Standard operators

1200
1200
1100
1050
1000

900

700

500
400

200
200
200

xFx
X

yTx
yTx

XFX
xFy
fy

E—

- 7=

->

\+

< = = =

- =< == ==
=\= > >= |S
@< O@=< @> @>=
+ - /\ \/

* / // rem

mod << >>
*xx

N\

-\

Other built-in operators of SICStus Prolog

1150 Fx dynamic multifile
block meta_predicate

900 Ty spy nospy

550 xfy :

500 yfx #

500 fx +
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Characteristics of operators

@ An operator is characterized by its type and priority.
@ The type determines the operator-class (the way the operator is placed) and the associativity:

Type Class Interpretation
left-assoc. | right-assoc. | non-assoc.
yTx x Ty xTx infix X FY=FX, Y)
Ty Tx prefix f X=Ff(X)
yT xF postfix X f=F(X)

@ |f multiple operators are present the parenthesizing depends on the priority and associativity:

@ a/b+c*d = (as/b)+(c*d) because the priority of /7 and * is 400, which is smaller than the
priority of + (500) (smaller priority = stronger binding).

@ a+b+c = (a+b)+c as the + operator’s type is yfx, thus it is left-associative (letter y is on the
left side of yfx) — binds to the left, parentheses are from the left to the right

@ a"b"c = a™ (b"c) as ™ operator’s type is xFy, therefore it is right-associative (binds to the
right, parentheses are from the right to the left)

@ a=b=c syntactically bad, as the = operator’s type is xfx, thus it is non-associative.
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Operators: use of parentheses

@ Let us set off from a fully parenthesized term containing multiple operators.
@ The priority of a subterm is the priority of its (outermost) operator.

@ |f a term with priority ap appears as an argument to an operator with priority op then the
parentheses around the argument can be omitted if:

@ ap < op, for example a+(b*c) = a+b*c (ap = 400, op = 500)

@ ap = op, and the term is the right argument of a right-associative operator, for example
a™ (b"c) = a’*b™c (ap = 200, op = 200)

@ ap = op, the left argument of a left-associative operator, for example (1+2)+3 = 1+2+3.
Exception: if the operator of the left argument is right-associative, thus the previous
condition can be applied.

@ An example for the exception:

@ -- op(500, xfy, +M).
| 7- - write((L +* 2) + 3), nl. = (1+2)+3
| 7- - write(l +* (2 + 3)), nl. = 1+72+3

@ Thus: in case of conflict the associativity of the first operator ,,wins”.
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Operators — additional comments

@ It is not allowed to have operators with the same name and in the same class at the same time.

@ \We can define operators in the text of a program with directives, for example:
.- op(500, xfx, --). - op(450, fx, @). sum_tree(@V, V). sum _tree(L--R, V) - ...

@ The twofold role of the “comma”

@ separates the arguments of the structure-term

@ works as an operator of priority 1000, type xfy, e.g. in clause bodies:
(p :- a,b,c) = :-(p,”,7(a,”,7(b,c)))

@ the “bare” comma (,) is not allowed as a name constant, but as an operator it can be used
without the quotes as well.

@ In an argument a term with a priority higher than 999 should be placed inside parentheses:

| ?- write_canonical((a,b,c)). = 7,’(a,”,”(b,c))
| ?- write_canonical(a,b,c). = I procedure write_canonical/3 does not exist

@ For the unambiguous analysis, the Prolog standard stipulates, that

@ an operator as an operand has to be placed in parentheses, for example: Comp = (=)
@ an infix and a postfix operator with the same name cannot exist.

@ These restrictions are not compulsory in many Prolog systems.
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Use of operators

@ \What are operators good for?

@ convenient writing of arithmetic procedures, like X is (Y+3) mod 4
@ symbolic processing of expressions (like symbolic derivation)
@ for writing the clauses themselves (:- and ~, - are both operators)
@ clauses can be handed over to meta-predicates, like asserta( (p(X):-q(X),r(X)) )
@ to make heads and procedure calls more readable:
- op(800, xFfx, [grandparent_of, parent of]).

GP grandparent of GC :- P parent of GC, GP parent of P.
@ to make data structures more readable, like

- op(100, xFx, [-D-
acid(sulphur, h.2-s-0.4).
@ Why are operators bad?

@ Itis asingle global resource, it can cause problems in a larger project.
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Arithmetics in Prolog

@ Operators make it possible to write arithmetic expressions the usual way, as we do in
mathematics or in other programming languages.

@ The is built-in predicate expects an arithmetic expression on its right side (2. argument),
evaluates it, and unifies the result with the argument on the left side.

@ The =:= built-in predicate expects an arithmetic expression on both sides, evaluates them, and
fails if the values are not equal.

@ Examples:
| ?- X = 1+2, write(X), write(C ), write_canonical(X), Y is X.
= 1+2 +(1,2) — X =1+2, Y =3 ? ; no
| - X =4, Y is X/2, Y =:= 2. — X =4, Y =207 ; no
| ?2- X =4, Y 1s X/2, Y = 2. — no

@ Important: the terms composed of arithmetical operators (+,-,...) are compound Prolog
terms. Only the built-in arithmetic predicates evaluate these!

@ The Prolog terms are basically symbolic, the arithmetic evaluation is the “exception”.
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Classical symbolic expression processing: derivation

@ Let’s write a Prolog predicate which calculates the derivative of a term made up of numbers and
the x name constant.

% deriv(Expr, D): Dis the derivative of Expr with respect to x.
deriv(x, 1).

deriv(C, 0) :- number (C).

deriv(U+V, DU+DV) :- deriv(U, DU), deriv(V, DV).
deriv(U-V, DU-DV) :- deriv(U, DU), deriv(Vv, DV).
deriv(U*V, DU*V + U*DV) :- deriv(U, DU), deriv(V, DV).

| ?- deriv(x*x+x, D).
= D = 1*X+x*1+1 ? ; no

| ?- deriv((x+1)*(x+1), D).
— D = (1+0)*(x+1)+(x+1)*(1+0) ? ; no

| ?- deriv(l, 1*x+x*1+1).
= | = X*X+X ? ; no

| ?- deriv(l, 0).
= no
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Example with operators: substitution value of a polynomial

@ Polynomial: a Prolog term built from numbers and the ‘x’ name constant, using the ‘+” and **’
operators.

@ The task: calculate the value of a polynomial for a given x value.

% value of(Expr, X, E): E i1s the value of the polynomial Expr,
% with the substitution x=X
value of(x, X, E) :-
E = X.
value of(Expr, , E) :-
number (Expr), E = Expr.
value of(K1+K2, X, E) :-
value of(K1l, X, E1),
value of(K2, X, E2),
E 1s E1+E2.
value of(K1*K2, X, E) :-
value of(K1l, X, El1),
value of(K2, X, E2),
E is E1*E2.

| ?- value of((X+1)*x+x+2*(x+x+3), 2, E).
E =227
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Prolog equivalents of basic concepts in logic

@ The elements of the logic language:

@ Expression (term): built up from variables and constants combined with functions eg.
f(a,g(X)), where f and g are names of functions with 2 resp. 1 arguments, « is a constant
name (e.g., a 0-argument function) and X is variable name.

@ Predicate: a relational symbol completed with the appropriate number of arguments where
the arguments are expressions eg.: divisor(X, X xY).

@ Statement (formula): Predicates combined with logical operators (e.g., A, V, -, —) and
quantors (V, 9),eg. VX (X <0 — =X < X % 2).
@ Prolog conventions:

@ The variable names begin with a capital letter or an underscore.

@ Functions and predicates wth two arguments can be written in infix form eg.
X+2xY =4+(X,%(2,Y)), X < X x2 =< (X,%(X,2))

@ Function (and constant) names begin with a small letter or are written between single

quotes. Symbols or symbol sequences are allowed as function, constant or statement
names (eg. +, *, <).
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Restricting the language of logic

@ To make the deduction process more efficient, it is worth it to restrict the language of logic.
@ \We introduce the concept of clauses. A clause is logic statement of the following form:

@ The left side of the implication (corollary) is the head of the clause
@ The right side (condition) is the body, members of the conjunction in the body are goals.
@ F; and T} are predicates n, m > 0 — both head and body can be empty.
@ X, ...X;: all variables of the clause.
@ An exact equivalent of the above formula (cf. A «— B = AV —-B):
VXy,... X;(FAV ... VE, VAL VLV AT
@ Simplified form of clauses: F,... F,:—T,...,T,. Ifm =0,then: - iseliminated.

@ Examples — warning, these are generic clauses, not all of them are allowed in Prolog!

male(X), female(X) :- human(X). % A human is male or female.
- male(X), female(X). = V X = (male(X)AN female(X))

% Nothing 1s both a male and a female.
love(X, X) :- saint(X). % AlIl saints love themselves.
saint(’Istvan’). % Istvan is a saint.
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Declarative Semantics — the Logic Form of Clauses

@ The notion of general clause as introduced in mathematical logic:
F,... F,:.—T,...T,. VX(FiV...VFE,V-T1V...V~-T,)

@ Definite clause or Horn clause: a clause whose head contains at most one element (n < 1).

@ Classification of Horn clauses

@ Ifn=1,m > 0, then the clause is called a rule, eg.
grandparent(GC,GP) :- parent(GC,P), parent(P,GP).

logic form: VGC GP P (grandparent(GC,GP) «— parent(GC, P) A parent(P,GP)
equivalent form: VGC GP  (grandparent(GC,GP) «— dP(parent(GC, P) A parent(P,GP)))

N—

@ incase of n = 1, m = 0 the clause is a fact, eg.
parent(’Imre”, “lIstvan’).
its logic form is exactly the same.
@ |n case of n = 0, m > 0 the clause is a query, eg.
- grandparent(C Imre’, X).
logic form: vX—grandparent(” Imre~”, X), equivalently -3Xgrandparent(” Imre”, X)
@ Ifn=0,m =0, then it is an empty clause, denoted by: O. Logically this is an empty
disjunction, which is equivalent to false.

Deklarativ programozés. BME VIK, 2006. tavaszi félév ' (Logikai Programozas)



LP-64

The Role of Functions in Prolog

@ The role of function symbols

@ The Prolog is based on so called equality-free logic, so we can not state that two terms (of
first order logic) are equal.

@ This is the reason that the function symbols can be only be used as constructor-functions:
flxy,...;xn) =2 (2= fly,.- syn) A1 =y1) A oo . A (T = Yn))
@ Example 1eaf(X) = Z< Z = leaf(Y) A X =Y, in other words, Ieaf(X) IS a new entity,
different from all other entities.
@ Example:

sum_tree(leaf(Value), Value).
sum_tree(node(Left,Right), S) :-
sum_tree(Left, S1), sum _tree(Right, S2), S 1s S1+S2.

| ?- sum_tree(node(leaf(l),leaf(2)), Sum). = Sum = 3 ?
| ?- sum_tree(Tree, 3). = Tree =leaf(3) ?

@ The term node(leaf (1), leaf(2)) in the query is unambiguously decomposed by the
procedure.

@ Pattern matching (unification) is bidirectional: it is able to both compose and decompose.
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Declarative Semantics of Prolog

@ Declarative Semantics

@ An auxiliary concept: an instance of a term/statement is a term/statement obtained by
substituting some/all variables in it.

@ The execution of a query is successful, if an instance of the body of the query is a logical
consequence of the program (i.e. the conjunction of the clauses in the program).

@ The result of the execution is the substitution which produces the instance.
@ A gquery may execute successfully in multiple ways.
@ The execution of a query fails if none of its instances is a consequence of the program.

@ Example: parent(Imre”, ~Istvan’). (pD)
parent(CImre”, “Gizella’). (p2)
parent(’Istvan’, *Géza’). (p3)
parent(’Istvan’, “Sarolt”). (p4)
parent(’Gizella”, “Civakodd Henrik?). (p5)
parent(’Gizella”, “Burgundi Gizella”). (p6)

grandparent(GC, GP) :- parent(GC, P), parent(P, GP). (ap)
- grandparent(’Imre’, GP). (goal)
@ from (p1) + (p3) + (gp) follows that grandparent(” Imre”, >Géza”), SO (goal)
executes successfully using the GP = ~Géza” substitution.
@ Another example of a successful execution: (p1)+(p4)+(gp) — GP = ~Sarolt”.
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Declarative Semantics

@ Why is declarative semantics a good thing?

@ The program is decomposable: It is possible to assign a meaning to single predicates (even
to single clauses) separately.

@ The program is verifiable: in view of the intended meanings of predicates it can be checked
If the clauses describe true statements.

@ Itis very important to formulate the intended meaning of a predicate in a head comment.
This is a declarative sentence which describes the relation between the arguments. Examples:
@ Head comments: % parent(C,P): C has parent P.

% grandparent(GC,GP): GC has grandparent GP.

grandparent(GC, GP) :- parent(GC, P), parent(P, GP).
The meaning of the clause: If GC has parent P ans P has parent GP, then GC has grandparent
GP. This is in accordance with our expectations and it is acceptable as a true statement.
@ Head comments: % sum_tree(T, Sum): Tree T has leaf sum Sum
%E is Exp: Arithm. expr. Exp hasvalue E. (is isinfix!)

sum_tree(node(L,R), S) :- sum _tree(L, S1), sum _tree(R, S2), S 1s S1+S2.

Meaning: If tree L has leaf sum S1 and tree R has leaf sum S2, and the arith. expression
S1+S2 has value S, then tree node(L,R) has leaf sum S. This is again a true statement.
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Declarative Semantics (contd.)

@ Why is declarative semantics insufficient?

@ The declarative semantics is based on general deduction.

@ There are several ways to do deduction, so this process needs search.

@ In case of an infinite search space the deduction enginge may fall into an infinite loop.
@ In case of finite search space the search may have very poor efficiency.

@ Some built-in predicates are able to work only under certain conditions. For instance: S is
S1+S2 signals error, if S1 or S2 is unknown. Because of this
sum_tree(node(L,R), S) - S 1s S1+S2, sum _tree(L, S1), sum _tree(R, S2).

is logically correct, but leads to an error.

@ As a consequence, it is very important that a Prolog programmer knows thoroughly the
execution mechanism of Prolog, in other words, the procedural semantics of the language.

@ Motto: Think declaratively and check procedurally!
Meaning: after you have written your declarative program, think it over if the procedural
execution is correct (does not fall in an infinite loop, is efficient, the built-in predicates are

operational, etc.)
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Procedural Semantics of Prolog

@ The execution mechanism of Prolog can be described in several ways:

@ Theorem proving by SLD resolution (very briefly see below)
@ Theorem proving by goal reduction (see next slides)
@ Pattern matching based application of backtrackable procedures (details see later).

@ Theorem proving by SLD used in Prolog:

@ SLD resolution: Linear resolution with a Selection function for Definite clauses.

@ The query negates the existence of the object looked for, eg.  Imre~ has no grandparents:
:- grandparent(’Imre”, GP). = —3JG grandparent(’Imre”, GP)

@ The resolvent of the query and a program clause results in a new query.

@ Such resolution steps are repeated until an empty clause is reached (backtracking when
reaching a dead end).

@ By this we prove indirectly that the body of the query is a consequence of the program: the
negation of the body and the program is proven to imply “false” (O).

@ This proof is constructive, ie. the variables of the query are instantiated — this is the answer
we seek eg. G = “Géza”).

@ Further answers can be produced by other proofs.
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Prolog as a Goal-Reduction Theorem Prover

@ The main idea: The goal to be solved is reduced to subgoals from which it follows.

@ Example program:

parent("Imre”, “Istvan’). (pl)
parent(’Imre”, “Gizella’). (p2)
parent(’ Istvan’, “Géza’). (...) (p3)

grandparent(GC, GP) :- parent(GC, P), parent(P, GG). (gp)

@ the initial query: :- grandparent(’Imre”, GP”).
(Now a query is considered as a statement to be proven.)

@ \We extend the query with one or more special goals to preserve the values of the variables:
- grandparent(CImre”, GP?), write(GP?).

@ The query is reduced (see next slide) repeatedly, until only write goals remain:

[red. with (gp) clause] - parent(C’Imre’, P), parent(P, GP?), write(GP?).
[red. with (pl) clause] - parent(’Istvan’, GP”), write(GP?).
[red. with (p3) clause] - write(’Géza’).

@ \We can read the result of the run from the argument of wri te.
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The reduction step

@ The clauses used in the example and the query:

parent(’ Imre”, “lIstvan’). (pD)
parent(’ Istvan’, ’Géza’). (p3)
grandparent(GC, GP) :- parent(GC, P), parent(P, GP). (gp)
- grandparent(CImre”, GP?), write(GP?).
@ Reduction step: a query + a related clause = new query.
@ The reduction step is tried for all clauses of the predicate (one by one):
@ The first goal of the query is brought to a form identical to that of the clause head by
variable substitution.
@ Both the clause and the query are specialized using this substitution. For (gp) this is:
grandparent(’Imre’, GP?) :- parent(’Imre”, P), parent(P, GP?). (gp*)
@ The first goal is replaced by the body of the clause, ie. the goal is replaced by its
precondition. In the example: parent( Imre”, P), parent(P, GP”), write(GP”).
@ Next, we reduce the goal using clause (p1), specializing the query by P = ~Istvan”:
parent(’Istvan’, GP”), write(GP”).
Because we reduced the query using a fact (with an empty body), its length decreases.

@ Next a similar step can be made using (p3), resulting in the final query: write(*Géza~).

Deklarativ programozés. BME VIK, 2006. tavaszi félév ' (Logikai Programozas)



LP-71

Reduction step — further detalls

@ Handling of variables

@ The scope of a variable is a single clause (cf. VX, ... X;(F < T)).

@ Before the reduction step the clause has to be copied, systematically replacing all variables
by new ones (cf. recursion).

@ Unification: Two terms/statements are brought to an identical form, by variable substitution.

@ The variables can be substituted with arbitrary terms, including other variables.
@ The unification produces the most general common form eg.

sum_tree(leaf(X), X sum_tree(leaf(X), X and not eq.
- ( - % common form: - ( - %) J
sum_tree(T, V) sum_tree(leaf(0), 0)

@ The result of the unification is the substitution, which results in the most general common
form. This is unique, except for variable renaming. In the example: T=1eaf(X), V=X.

@ Examples:
Cal | : Head: Substi tution:
grandparent(’Imre”, GP”) grandparent(C, GP) C =Imre”, GP = GP~
parent(CImre”, P) parent(CImre”, “Istvan’) P="Istvan’
parent(CImre”, P) parent(’Istvan’, *Géza’) not unifiable
love(’Istvan’, Who) love(X, X) X = 7Istvan’, Who = “lIstvan’
love(Whol, Who) love(X, X) X = Who, Who = Whol
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Choice points, Backtracking

@ We were “lucky” in the example, the sequence of the reduction steps led to a solution

@ In the general case we can reach a dead end (a non-reducible query), eg.

- grandparent(’Imre”, “Civakodd Henrik?). (gp)
- parent(CImre’, P), parent(P, ’Civakodd Henrik?). (pl): parent(’Imre”, “lIstvan’)
- parent(’Istvan’, “Civakodo Henrik™). ?2??

@ The 2nd query was reduced with clause (p1), but to get to the solution we need (p2):
parent(’ Imre’, *Gizella”) — Not only the the first clause has to be tried but all clauses!

@ |If a query is reduced with any but the last of the clauses then a choice point is created, in which
we store the query and the number of the clause used for the reduction.

@ When a dead end is reached or further solutions are requested: we go back to the choice point
visited last (the youngest) and then continue the search among the remaining (untried) clauses.

@ |If no new clause can be found at a choice point, then it is deleted and we backtrack further. If
there are no more choice points the execution of the query fails.

@ In the above example: we backtrack to the step 2 and there we try the second (p2) clause:

(...) - parent(CImre’, P), parent(P, ’Civakodé Henrik?).
(pl) :- parent("Gizella”, ’Civakodd Henrik?).
(p5) O
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gp(C’ Imre’
pCImre”, “Istvan’). % (pl)
p(CImre”, “Gizella’). % (p2)
p(Clstvan’, “Géza’). % (p3)
p(’Istvan’, “Sarolt”). % (p4)
p(’Gizella”, CH”). % (p5)
p(’Gizella’, ’BG?). % (p6)
gp(GC, GP) :- p(C Imre”,
p(GC, P), p(P, GP). % (gp)
(p1)
@ The search tree P="Istvan’
@ the nodes are execution states
@ labels appearing on p(’Istvan’,”CH?>)
@ nodes are queries, @

@ edges are clause numbers and substitutions.
@ The Prolog search: traversal of the search tree

@ from left to right,
@ depth-first search.

@ The dashed line denotes unsuccessful clause searches,
so called first argument indexing eliminates the top one.

, “CH™)
(9p)

P), p(P, "CHY).

M) T
P="Gizella’ L_F

p(*Gizella”,”CH”)
(P5) .
[]
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The trace of the search space

@ This is an (edited) dialog with the reduction trace program. We eliminated some failing
unifications.

Il ?- grandparent(’Imre”, “Civakodd Henrik?).

GO: grandparent(’Imre”,”Civakodo Henrik”) ? <--- continues when RET is pressed

| Trying clause 1 of grandparent/2 ... successful
| (1) {Child_ 1 = "Imre”, GrandParent_1 = ~“Civakodo Henrik”}<--- vari abl e renam ng

|

G1l: parent(’ Imre” ,Parent_1), parent(Parent_1,’Civakoddé Henrik”) ?

| Trying clause 1 of parent/2 ... successful

| (1) {Parent_1 = ’Istvan’}

|-—-- G2: parent(’ Istvan’,>Civakodo Henrik”) ?

(...) <--- G3-&B 6 unsuccessful clause matches
| |<<<< Failing back to goal G1 <--- Does 'Inmre’ have other parents?
| Trying clause 2 of parent/2 ... successful

| (2) {Parent_1 = °Gizella’}

|

|-——- G9: parent("Gizella’,’Civakod6 Henrik”) ?

| | Trying clause 5 of parent/2 ... successful

I I ®& {

| |--——-—- Gi4: [ 7 <--- enpty clause, success

| | | ++++ Solution: ?

| |<<<< Failing back to goal G1 <--- see previous slide, bottomdashed |ine
I

| <<<< No more choices <--- see previous slide, top dashed line
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p(CCImre”, “Istvan’). % (1) gp(GC, GP) :-
p(C’Imre”, ’Gizella’). % (2) gp(GC, P), sz(GC, GP).
p(’Istvan’, “Géza’). % (3)
p(’Istvan’, “Sarolt’).% (4) ’ ’
p(’Gizella’, *CH?). % (5) ng( Imre’, GP)
p(’Gizella’, *BG?). % (6)
o PCIMre’, P), p(P, GP)
(1) (2)
P ="lIstvan’ P ="Gizella’
® p(’Istvan’, GP) ® p(’Gizella’, GP)
(3) (4) (5) (6)
GP ="Géza’ GP ="Sarolt’ GP =/CH’ GP ="BG’
[] [] [] []

LP-75
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Search Tree — Yet Another Example

p(CCImre”, “Istvan’). % (1) gp(GC, GP) :-

p(C’Imre”, *Gizella’). % (2) p(GC, P), p(P, GP).
p(’Istvan’, ’Géza’). % (3)

p(’l§tvén’, Sarolt”).% (4) gp(GC, 'BG’)

p(’Gizella’, "CH?). % (5) o

p(’Gizella’, *BG?). % (6)

p(GC, P), p(P, 'BG’)

(1)
GC ="Imre’ GC ="Imre’
P = "Istvan’ P ="Gizella’
p(’lstvan’, ’BG’) ® pn(’Gizella’, ’BG?) U
A -

[]
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Procedural models of Prolog execution

@ A procedure is a set of clauses with the same functor
@ A procedure is called via pattern matching (unification) of the call and a clause head.
@ Models of Prolog execution:

@ Procedure-reduction model

@ Essentially this is the same as the goal-reduction model.

@ The base step: the reduction of a sequence of calls (i.e. a query) using a clause (this is the
already known reduction step).

@ Backtrack: going back to an earlier query and trying it with another clause.
@ Advantages of the model: can be defined exactly, the search space is explicit.
@ Procedure-box model
@ Main idea: execution consists of passing through “ports” of nested procedure boxes.
@ Basic ports of a procedure box: entry, (successful) exit, failure.
@ Backtrack: asks for a new solution from an already exited procedure (“redo” port).

@ Advantages of the model: it is similar to the traditional recursive procedure model, the
built-in Prolog tracing mechanism is based on this.

Deklarativ programozés. BME VIK, 2006. tavaszi félév ' (Logikai Programozas)



LP-79

The Procedure-reduction Execution Model

@ The main idea of the reduction execution model

@ A state of the execution: a query
@ The execution consists of two kinds of steps:
@ reduction step: a query + a clause — a new query
@ backtrack (in case of dead end): back to the last choice point
@ Choice point:
@ creation: at a reduction step which uses a any but the last clause
@ activation: at backtracking, return to the query of the choice point and try further clauses
for matching
(Therefore the choice point has to store in addition to the query the serial number of the
used clause.)
@ the number of the choice points can be reduced by indexing

@ The reduction model can be represented with a search tree

@ During the execution the nodes of the tree are traversed using depth-first search

@ The prolog execution engine has to store the choice points on the path from the root to the
current node of the search tree—this the choice point stack.
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The foundation of the reduction model: reduction step

@ Reduction step: reduce a query to another query

@ reduction with a program clause (if the first goal calls a user-defined procedure):

@ The clause is copied, every variable systematically changed to a new variable.

@ The query is split into the first call and a residual query.

@ The first call is unified with the clause head.

@ The necessary substitutions are performed on the body of the clause and on the residual

query

@ The new query: clause body prepended to the residual query

@ |f the call and head of the clause cannot be unified then the reduction step fails.
@ reduction of a built-in call (the first goal calls a built-in procedure)

@ The query is split into the first call and a residual query.

@ The built-in procedure call is executed

@ This can be successful (and may substitute variables) or it can fail.

@ In case of success the substitutions are performed on the residual query.

@ The new query: the residual query

@ |f the call of the built-in procedure fails then then the reduction step fails.
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The Execution Algorithm of Prolog

1. (Initialization:) The stack isempty, QU -= query
2. (Built-in procedure:) If thefi rst call of QU is built-in then execute it,

a Ifitfalls= step 6.
b. If itissucceeds, QU :=theresult of reduction step = step 5.

3. (Initial value for the clause counter ) 1 = 1.

4. (Reduction step:) Let us consider the list of clauses applicable to the fi rst call of QU. If there is no indexing, then
thislist will contain all clauses of the predicate, with indexing this will be afi Itered subsequence. Assume the list
hasN elements.

alfl > N= stepb.

b. Reduction step between the Ith clause of the list and QU query.
c. If thisfails,then1 = 1+1 = step4.

d. If I < N (non-last clause), then push <QU, 1> on the stack.

e. QU :=theresult of reduction step

5. (Success)) If QU is empty, then execution ends with success, otherwise = step 2.
6. (Failure:) If the stack is empty, then execution ends with failure.

7. (Backtrack:) If the stack is not empty, then pop <QU, I>fromthestack, I -= 1+1, and = step 4.
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Indexing (preview)

@ What is indexing?

@ Fast selection of the clauses applicable to a call (clauses potentially matching the call),
@ involving a compile time classification of the clauses of the procedure

@ Most of the Prolog systems, including SICStus Prolog, do first argument indexing.
@ The indexing is based on the outermost functor of the head argument.

@ in case of a number or a name constant C: the functor is C/0;
@ in case of structure R with N arguments: the functor is R/N;
@ in case of variable the functor is not defined (the clause is associated with all functors).

@ Implementation of indexing:

@ At compile time: for each functor the list of the applicable clauses is built
@ At runtime: the appropriate clause list is obtained in practically constant time.
@ Important: if the list has a single element, no choice point is created!

@ Example: the parent(” I1stvan~, X) call selects a two element clause list, but for parent(X,
> 1stvan”) all 6 clauses are kept in the list (because the SICStus Prolog indexes the first
argument only)
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@ Advantages

@ (relatively) simple and (relatively) precise definition
@ the search space is explicit, and graphically describable

@ Disadvantages

@ |t hides the exit from a predicate, eg.

= m~W0WQOT

-, r. GO:
- s, t. G1:
G2:
G3:
G4:
G5:

?
?
r ?
?
? < exit fromgq

17

S =0QOT0T
-~ ==

@ it does not reflect the real execution mechanism of Prolog implementations
@ it cannot be used to trace a “real” Prolog program (long queries)

@ That is why another model is needed :

@ Procedure box model

@ (it is also called the 4-port-box or Byrd box model)
@ the built-in trace function of most Prolog systems is based on this model
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Procedure-Box model

@ The two phases of the Prolog procedure-execution

@ forward execution: nested procedure entries an exits
@ backward execution: requesting a new solution from an exited procedure

@ A simple example:
a2). ad4)- ad)- p(X) - a(X), X > 3.
@ Enter the p/1 predicate (Call port)
@ Enter the g/1 predicate (Call)
@ The g/1 predicate exits successfully with the result q(2) (Exit port)
@ The > /2 built-in predicate is entered with a 2>3 call (Call)

@ The > /2 predicate fails (Fail port)

@ (backward execution): backtrack into the (already exited) gq/1, asking for a new solution
(Redo Port)

@ The g/1 predicate exits with the result q(4) (Exit)
@ Predicate > /2 is entered with a 4>3 call and exits successfully (Call, Exit)
@ The p/1 predicate exits successfully with the p(4) result (Exit)
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a(2)- a@®. ad).

p(X) - a(X), X > 3.

p(X)
(@
C:all - - - - — — -|>_—___:;._
X=2 }.
A/}Z:l{ b
X
Fail *—— 7 -~~~ —~+----- -

Y

—_— o —— - — —

— — — — = — -

A

Y

Exi t

Redo
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@ The previous example tracking in SICStus Prolog
a2)- a@®- a().-

p(X) - a(X), X > 3.

| ?- trace, p(X).

1 1
2 2
? 2 2
3 2
3 2
2 2
? 2 2
4 2
4 2
? 1 1
X =47 ;
1 1
2 2
2 2
5 2
5 2
1 1
X=772 3 no

Call:
Call:
Exit:
Call:
Fail:
Redo:
Exit:
Call:
Exit:
Exit:

Redo:
Redo:
Exit:
Call:
Exit:
Exit:

p( _463) ?
q(_463) ?
a@) ?
2>3 ?
2>3 ?
a) ?
a4 ?
4>3 ?
4>3 ?
p(4) 2

p(4) ?
a(4) ?
a(?) ?
7>3 ?
7>3 ?

p(7) ?

% ? = non-determnistic exit

% backwar d execution

% backward executi on
% backwar d execution
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Procedure-Box: A more complex example

PpCX,Y) - a(X,2), p(Z,Y). p(X,Y) - q(X,Y).
q(1,2). q(2,3). q(2.4).

P(X,Y)
Cal | T - —apm e — Exit
Tax2 | Tozy g
_d_/____<___:\.._ < __f_/____<___:\..__
———-\:———|>—————,——
V /
1a(x ) |
Fai | = S G Redo
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Procedure-Box model — principles of connection

@ How is the box of a “parent” predicate built from boxes of predicates called in it?

@ \We can assume that all clause heads contain (distinct) variables only, as the head unifications
can be transformed to calls of the = /2 built-in predicate.

@ Forward execution:

@ The Call port of the parent is connected to the call port of the first call of the first clause.
@ The Exit port of a predicate call is connected to

@ the Call port of the following call,
@ the Exit port of the parent if there are no following calls

@ Backward Execution:

@ The Fail port of a predicate call is connected to

@ the Redo port of the preceding call, or
@ to the Call port of the first call of the following clause if there are no preceding calls
@ to the Fail port of the parent if there are no following clauses

@ The Redo port of the parent is connected to the Redo port of the last call of each clause
@ always go back to the clause from which the control exited previously
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Procedure-Box model — object oriented view

@ Each predicate is transformed to a class which has a constructor function (to get the call
parameters) and has a method to give the “(next) solution”.

@ The class registers the number of the clause in which the control is.

@ At the first call of the method we pass the control to the first Call port of the first clause.

@ When we arrive at a Call port of a body goal an instance is created of the predicate called, then
@ the “next solution” method is called of this predicate instance (*)

@ If this call returns with success then the control jJumps to Call port of the next call or to the
Exit port of the parent

@ |f this call fails then the predicate instance is destroyed and we jump to Redo port of the
previous call, or to the beginning of the following clause, etc.
@ When we arrive at the Redo port then we continue at step (*)

@ The Redo port of the parent (which corresponds to the non first call of the “next solution”
method) gives the control to the last Redo port of the clause whose clause number is stored in
the instance.
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Box of OO approach: p/ 2 C++ code of method of “next solution”

bool ean p:: next ()
{ switch(clno) {
case O:
clno = 1;

gaptr = new q(x, &z);

redoll:
i f(!gaptr->next()) {
del ete gaptr;
goto cl 2;
}

pptr = new p(z, py);
case 1:

/* redol2: */
if(!pptr->next()) {
del ete pptr;
goto redoll;

}

return TRUE;
cl 2:

clno = 2;

gbptr = new q(Xx, py);

case 2:
/* redo21: */
i f(!gbptr->next()) {
del ete gbptr;
return FALSE;

}
return TRUE;

b}

11
11
Il

Il
11
11

11
/11

I
11
I

11
/11
Il
11
Il
11
11

11

entry point for the Call port
enter clause 1:
create a new i nstance of subgoal

p(XY) - a(X 2), p(ZY).
a( X, 2)

if g(X 2) fails
destroy it,
and continue with clause 2 of p/2

ot herwi se, create a new instance of subgoal p(ZY)

(enter here for Redo port if clno==1)

if p(z,Y) fails

destroy it,

and continue at redo port of q(X 2)

otherwi se, exit via the Exit port

enter clause 2: p(XY) :- q(XY).

create a new instance of subgoal q(X Y)
(enter here for Redo port if clno==1)

if qg(XY) fails
destroy it,
and exit via the Fail port

ot herwi se, exit via the Exit port
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Backtracking — an arithmetic example

@ Example: search for “good” numbers

@ The task: Find a two digit number whose square has three digits and the first two digits of the
square are the same as those of the original number, but in reverse order. (For example, 27:
27% = 729.)

@ The program:

% decl(Jd): J i1s a positive decimal digit.
decl(l). decl(2). decl(3). decl(4). decl(b5). decl(6). decl(7).
decl(8). decl(9).

% dec(Jd): J 1s a decimal digit.
dec(0). dec(Jd) :- decl(Jd).

% Square of Num is a 3 digit number and begins with Num reversed.
good_number (Num) : -

decl(A), dec(B),

Num is A * 10 + B, Num * Num // 10 =:= B * 10 + A.
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Prolog Execution — the 4-port procedure box model

good_number (Num) : -
decl(A), dec(B),
Num is A * 10 + B, Num * Num // 10 =:= B * 10 + A.

good_number
decl(A) dec(B) Num 1is ,
Call B B A*10+B Num*Num//710 | true || EXIt
A=L B=0 =:= B*10+A |
- 3 false
9 9 J
Fail Redo

Deklarativ programozés. BME VIK, 2006. tavaszi félév ' (Logikai Programozas)



LP-93

Backtracking Search — Enumeration of an Interval

@ dec(J) enumerated the integers between 0 and 9
@ Generalization: let’s enumerate the integers between N and M (N and M are integers)

% between(M, N, 1): M =< I =< N, | iInteger.
between(M, N, M) :-

M =< N.
between(M, N, 1) :-

M < N,

M1 is M+1,

between(M1, N, I).

% dec(X): X i1s a decimal digit
dec(X) :- between(0, 9, X).

?- between(l, 2, X), between(3, 4, Y), Z is 10* X+ Y.

|

Z =13 ? ;
Z =14 ? ;
Z =23 ? ;
Z =24 ? ;
no
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The SICStus Procedure-Box Model Debugger — the Most Important Commands

@ Baisc tracing commands

@

“C L e L e

o »w + N

@

h

<RET> (help) — displays the list of commands

<RET> (Creep) or <RET> — continue tracing, stopping at every port

<RET> (leap) — just stop at breakpoints, but keep building boxes at all ports
<RET> (zip) — just stop at breakpoints, do not build boxes

<RET> resp. - <RET> — put/remove a spypoint on the current predicate
<RET> (skip) — skips the body of the predicate (Call/Redo = Exit/Fail)
<RET> (out) — exits from the body of the predicate

@ The commands which influence the Prolog execution

@ u <RET> (unify) — unifies the current goal with a user-supplied term, instead of execution.
@ r <RET> (retry) — retries the execution of the current call (jumps to the Call port)

@ Other commands

@ w

@
@

@ a

b

n

<RET> (write) — writes out the call without observing the depth-limit
<RET> (break) — enters a new, embedded Prolog interaction level
<RET> (notrace) — switches off tracing

<RET> (abort) — aborts the current run
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Disjunction, example: the “ancestor” predicate

@ The “ancestor” relation is the transitive closure of the “parent” relation: a parent is an ancestor
(1), and an ancestor of an ancestor is also an ancestor (2), thus:

% ancestorO(E, Anc): Anc i1s ancestor of E.
ancestorO(E, P) :- parent(E, P). % (1)
ancestorO(E, Anc) :- ancestorO(E, AncO), ancestorO(AncO, Anc). % (2)

@ The definition of ancestoro0 is mathematically correct, but gives an infinite search space:
parent(child, father). parent(child,mother). parent(mother,grandfather).

| ?- ancestorO(child, Anc).
Anc = father ? ; Anc = mother ? ; {later:} ! Error: insufficient memory

@ The cause of the infinite recursion is that the goal : - ancestor0(father, X). fails at clause
(1), and (2) leads to a : - ancestorO(father, Y), ancestor0O(Y, X).goalandsoon...
@ | et us eliminate the left recursion:

ancestorl(E, P) :- parent(E, P). % (3)
ancestorl(E, Anc) :- parent(E, P), ancestorl(P, Anc). % (4)

| ?- ancestorl(child, Anc).
Anc = father ? ; Anc = mother ? ; Anc = grandfather ? ; no

@ This executes all parent (X, Y) subgoals twice: in (3) and in (4).
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The disjunction

@ The ancestor1 predicate can be made more efficient by merging its clauses:

ancestor2(E, Anc) :- parent(E, P), self _or_ancestor(P, Anc).
self_or_ancestor(E, E). (@D
self_or_ancestor(E, Anc) :- ancestor2(E, Anc).

@ The self_or_ancestor predicate can be eliminated with the introduction of a disjunction:

ancestor3(E, Anc) :-
parent(E, P),
( Anc =P
; ancestor3(P, Anc)
).
@ SICStus Prolog implements the above disjunction by building an auxiliary-predicate equivalent
to self_or_ancestor and transforms ancestor3 t0 ancestor?2.

@ (Recall:) The x=Y in-built predicate unifies its two arguments.

@ The x=Y procedure could be defined using the fact: u = u. ==, V), cf. (D).
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The disjunction as a syntactic sugar

@ The disjunction can have multiple branches. The “;” operator binds less tightly than ,” therefore
the disjunction must be parenthesised, while its branches don’t have to be. Example:

a(X, Y, 2) :-
p(X, V), a¥, V),
C rQu, N, s, 2)
;. 2)
;. tU, 2)
),
u(X, 2).
@ The disjunction can always be eliminated with auxiliary-predicates.

@ We look for the variables which can be found both in the disjunction and outside it, as well
@ The auxiliary-predicate will contain these variables as arguments
@ Each clause of the auxiliary-predicate corresponds to a branch of the disjunction

auxiliary(U, V, 2) - r(U, T), s(T, 2).
auxiliary(U, V, 2) - (v, 2).
auxilrary(U, v, 2) - t(U, 2).

a(X, Y, 2) :-
p(X, U), aq(¥, V),
auxiliary(U, Vv, 2),
u(X, 2).

@ The semantics of the disjunction can be defined with this auxiliary-predicate conversion.
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Disjunctions — comments

@ Are the clauses in ‘“AND’ or “‘OR’ relation?

@ The clauses of the database are in AND relation, e.g.
parent(’Imre”, “lIstvan’). parent(CImre”, “Gizella”).
means: Imre has parent Istvan AND Imre has parent Gizella.

@ The clauses in AND relationship lead to disjuctive answers (which are in OR relation):
- parent(CImre” Sz). = Sz = “Istvan” ? ; Sz = *Gizella” ? ; no

The answer to the question “Who is a parent of Imre?” is: Istvan OR Gizella.

@ The above predicate with two clauses can be converted to a single clause using a disjunction:
parent(CImre”, P) :-
( " Istvan” ™
; *Gizella” ™)
).

Thus the conjunction has been changed to a disjunction (De Morgan’s laws).

P =
P =

@ In general: all predicates can be converted to have only one clause:

@ The clauses are transformed to have identical heads using new variables and equalities:

parent(CImre”, P) - P
parent(CImre”, P) - P

>Istvan’.
*Gizella’.

@ The bodies are collected into a disjunction, which forms the body of the new predicate ((*)).
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Negation

@ Task: Let us find (in the database) a parent who is not a grandparent!
@ For this we need negation:

@ Negation by failure: the \+ Call structure runs the call and succeeds if and only if the
call fails.

@ A solution to the above task:

| ?- parent(_, X), \+ grandparent( _, X).
X = ?Istvan’ ? ;

X = ’Gizella” ? ;

no

@ An equivalent solution:

| ?- parent(C, X), \+ parent(_, _C).
X = ?Istvan’ ? ;

X = ”Gizella” ? ;

no

@ What happens if the two calls are switched?

| ?- \+ parent(_, C), parent( C, X).
no
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NF — Negation by Failure

@ The \+ call is a built-in meta-predicate (cf. I — unprovable)

@ executes the call call,
@ if call completes successfully, then fails
@ else (ie. if call fails) succeeds.

@ During the execution of \+ call at most one solution of Call is obtained.
@ \+ Call never binds variables.
@ Problems with the Negation by Failure:

@ “closed world assumption” (CWA) — anything that is unprovable is considered false.
| ?- \+ parent(C’Imre’, X). -——=> no
| ?- \+ parent("Géza’, X). -——-> true ?

@ \ + H declarative semantics: —3X (H ), where X denotes the variables in H that are
unbound at the moment of call.

| 2- \+ X =1, X
| ?- X =2, \+ X

2. -——=> no
1. _———>X =22
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Example: determining the co-efficient in a linear expression

@ Formula: a number, the “x’ name constant or structures built from these using the ‘+” and “*’
operators.

@ % - type term == {x} \/ number \/ {term+term} \/ {term*term}.
@ Linear formula: a number appears at least on one side of the **’ operator.

% coeff(Term, E): The coefficient of x 1s E in the Term linear formula.

coeff(x, 1). coeff(T1*T2, E) :-
coeff(Term, E) :- number(T1),
number(Term), E = O. coeff(T2, EO),
coeff(T1+T2, E) :- E 1s T1*EO.
coeff(T1l, E1), coeff(T1*T2, E) :-
coeff (T2, E2), number(T2),
E iIs E1+E2. coeff(T1, EO),
E 1s T2*EO.
| ?- coefF(((X+1)*3)+x+2*(x+x+3), E). | ?- coeff(2*3+x, E).
E=87; E=17? ;
no E=173; no
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@ with the use of negation:

C---)
coeff(K1*K2, E) :-

number (K1), coeff(K2, EO), E 1s K1*EO.
coeff(K1*K2, E) :-

\+ number (K1),

number(K2), coeff(Kl, EO), E 1s K2*EO.

@ with the more efficient conditional construct;

C---)
coeff(K1*K2, E) :-

( number (K1) -> coeff(K2, EO), E 1s K1*EO
number(K2), coeff(Kl1l, EQ0), E is K2*EO

).
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Conditional constructs

@ Syntax (condition, then, else are arbitrary goals):

C--2) -
Y

condition -> then

(

(

: else
),
C---)-

@ Declarative semantics: the above form is equivalent to the following one, if the conditionis a
simple condition (cannot be solved in multiple ways):

C--2) -
-2),
condition, then
\+ condition, else

AN A A

).
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Conditional constructs (continued)

@ Procedural semantics
The execution of a (condition->then;else),continuation goal is as follows:

@ The condition call is executed.
@ |If condition succeeds, then the then, continuation subgoal remains, with the
substitutions resulting from the first solution of the condition. The other solutions of the

condition subgoal are ignored.
@ If condition fails, then the else, continuation subgoal remains without any substitution.

@ Multiple branching with nested conditional constructs:

( condl -> thenl

( condl -> thenl
(cond2 -> then2

cond2 -> then2
) --))
@ The else part can be omitted, the default is: fail.

@ The\ + cond negation can be replaced withthe ( cond -> fail ; true ) conditional

construct.
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Conditional constructs — examples

@ Factorial:

% fact(+N, ?F): NI = F.

fact(N, F) :-
( N=0->F=1 % N=0, F=1
; N > 0, N1 is N-1, fact(N1l, F1), F is N*F1
)-

@ The above conditional has the same meaning as the disjuntion obtained by replacing -> with a
comma (see comment), but it is more efficient, as it does’t leave a choicepoint.

@ Sign of number:

% Sign = sign(Num)
sign(Num, Sign) :-

( Num > 0 -> Sign
Num < O -> Sign
Sign = 0

i1
|
=
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The Prolog Term: the Data Structure of Prolog

@ Simple data objects:

@ Constants

@ Integers (infinity size in practice)

@ Floating point numbers

@ name constants (max 65535 characters in SICStus Prolog)
@ Variables

@ compound data objects:

@ structures: ( structure name )( (arg, ), ..., (arg,))

@ (structure name ) is an arbitrary name constant

@ (arg, ) is an arbitrary term

@ The number of the arguments of a structure is also called its arity.
@ The arity of structures is between 1 and 255 in SICStus Prolog

@ The functor of the structure: ( structure name )/ n
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@ Classification of Prolog terms — built-in predicates for classification

Term

T

var nonvar

/\

atomic compound

T

atom number

/\

integer float

var (X)

nonvar (X)
atomic(X)
compound(X)
atom(X)
number (X)
integer(X)
Tloat(X)

X variable

X non-variable
X constant

X structure

X name constant
X number

X integer

X fbat

@ A classification predicate checks the current state of its argument, therefore it has no

declarative semantics:

?- X =1, integer(X).

?- iInteger(X), X = 1.

?2—- atom(’ Istvan”), atom(istvan).
?- compound(leaf(X)).

?- compound(X) .

N
|

FEELY

yes
no
yes
yes
no
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Unification — the Data Manipulation Mechanism of Prolog

@ Unification: bringing two Prolog terms (eg. a procedure call and a procedure head) to an
identical form, by possibly instantiating variables.

@ Examples

@ |nput parameter passing — substitutes the head variables:
call: grandparent(’Imre”, GP),
head: grandparent(C, G),
substitution: C = “Imre”, G = GP

@ OQutput parameter passing — substitutes the variables of the call:
call: parent(’ Imre”, P),
head: parent(’Imre”, ~lIstvan?),
substitution: P = ~Istvan’

@ Input/Output parameter passing — substitutes the variables of both the call and the head:
call: sum_tree(leaf(5), Sum)
head: sum_tree(leaf(V), V)
substitution: v = 5, Sum = 5
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Unification: Substitution of Variables

@ The concept of substitution:

@ The substitution is a function which assigns terms to certain variables.
@ Example: 0 = {X«a, Y«s(b, B) , Z—C}. Here Dom(c) ={X,Y, Z}
@ The o substitution assigns a to X, s(b,B) to Y and C to z. Notation: Xo = a etc.

@ The substitution function can be naturally extended to all terms:
@ T'o: o applied to term 7": the substitution o is applied simultaneously to 7.
@ Example:f(g(Z,h),AY)Yoc=1(g(C, h), A s(b,B))

@ The composition of o and 6 substitutions (o ® #) — applying them one after the other
@ The substitution of o ® 6 assigns to x € Dom/(o) variables the (zo)6 term, and to other

y € Dom(6)\ Dom(o) variables it assigns y6 (Dom(o ® 68) = Dom(o) U Dom(0)):
o®0={x+— (xo)0 |z € Dom(o)}U{y«— yb |y € Dom(0)\Dom(o) }
@ eg. incase of § = {X«b,B—d} 0 ® § = {X«a, Y«s(b, d) ,Z—C, B—d}
@ Aterm G is more general than .S, if there exists a substitution p, such that S = Gp

@ Example: G =f (A, Y) is more general than S =f (1, s(Z) ) , because in case of
p={A—1,Y<s(2) }, itholds that S = Gp.
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Unification: the Most Generic Unifier

@ Terms A and B can be unified if there exists a substitution o such that Ac = Bo. This
Ao = Bo is called a common instance of A and B.

@ Two terms usually may have more common instances.

@ Example: Common instancesof A =f (X, Y) and B =f (s(U), U) canbe
@ () =f (s(a), a) with the substitution of 71 = {X<s(a), Y«<a, U—a}
@ C, =f (s(U), U with the substitution of oy = {X<—s(U), YU}
@ 5 =f (s(Y), Y) with the substitution of o3 = {X<s(Y), U—Y}

@ The most generic common instance of A and B is a term C which is more general than all
common instances of A and B.

@ In the example above C, and C'5 are the most generic common instances
@ Theorem: The most generic common instance is unigue, except for variable renaming.

@ The most generic unifier of A and B is a substitution ¢ = mgu(A, B) for which Ao and Bo are
the most generic common instances of the two terms.

@ |n the example above o5 and o3 are most generic unifiers.

@ Theorem: The most generic unifier is unique, except for variable renaming.
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The Unification Algorithm

@ The Unification Algorithm

@ input: two Prolog terms: A and B
@ the task: determine the unifiability of the two terms
@ the result: in case of success, return the most generic unifier (mgu(A, B)).

@ The unification algorithm, i.e. determining o = mgu(A, B)

1. If A and B are the same variables or constants, then ¢ = {} (empty substitution).
2. Else, if Aisavariable, then o = {A «— B}.
3. Else, if B is avariable, then o = {B «— A}.
4. Else, if A and B are compounds with the same name and arity and their argument lists are
Ai,...,Ayand By,...,By resp., and
a. The most generic unifier of A, and B is oy,
b. The most generic unifier of Asoq and Byoy 1S 09,
c. The most generic unifier of Aso,09 and Bso09 1S 03,
d....
theno =01 ® o0y, R o3 R .. ..
5. In all other case A and B are not unifiable.
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Unification examples

@A = sumtree(leaf(V), V),B = sumtree(leaf(5), S

@ (4.) The name and arity of A and B is the same
@ (a)mgu(l eaf (V), leaf(5)) (4th,then2nd) = {V—5} =0,
@ (b.) mgu(Voy, S) = ngu(5, S) (3rd)={S<5} =0y

@ so mgu(A, B) = 01 ® 09 = {V<5, S5}

@A = node(leaf (X), T),B= node(T, leaf(3))

@ (4.) The name and arity iof A and B is the same
@ (a)mgu(leaf (X), T) Brd)={T—leaf (X)} =0,
@ (b)) mgu(Toy, leaf(3)) = ngu(leaf (X), |eaf(3)) (4th,then 2nd) =
{X3} =0y
@ so mgu(A, B) = 01 ® 09 = {T«l eaf (3) , X3}
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Unification Examples in practice

@ Built-in predicates related to unification:

@ X = Y unifies its two arguments, fails, if this is not possible.
@ X \= Y succeeds, if the two arguments are not unifiable, otherwise itfails.

@ Examples:

| ?- 3+(4+5) = Left+Right.
Left = 3, Right = 4+5 ?

| ?- node(leaf(X), T) = node(T, leaf(l3)).
T = leaf(3), X =3 ?

| ?- X*Y = 1+2*3. % because 1+2*3 = 1+(2*3)
no

| ?- X*Y = (1+2)*3.
X=1+2, Y =3 7

| ?- (X, 3/Y-X, Y) = f(U, B-a, 3).
B=3/3,U=a, X=a, Y=37

| ?- F(F(X), U+2*2) f(U, f(3)+2).
U=¥Ff@B), X=3, Z=2%27
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A Further Issue in Unification: the Occurs Check

@ Question: Are x and s(X) unifiable?

@ The mathematical answer is : no, A variable is not unifiable with a structure in which it
appears (checking this is called the “occurs check™).

@ The occurs check is costly, so it is not used by default, consequently cyclic terms may be
created.

@ Itis available as a standard predicate: uni fy_w t h_occurs_check/ 2

@ Extension (eg. SICStus): Proper handling of cyclic terms created by not performing occurs
checks.

@ Examples:

| - X = s(1,X).
X =s(l,s(1,s(1,s(1,s(--))))) ?
| ?- unify _with_occurs_check(X, s(1,X)).
no
| ?- X = s(X), Y = s(s(Y)), X =Y.
X = s(s(s(s(s(---))))), Y = s(s(s(s(s(---))))) ?
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The concept of lists in Prolog

@ The Prolog list

@ The empty list is the [] atom. The non-empty list is a compound ~ .~ (Head, Tail) where

@ Head is the head (first element) of the list, while
@ Tail is the list tail, that is the list composed of the remaining elements.

@ Lists can be written in simplified form (“syntactic sugar”).

@ The implementation of lists is optimized: it is more space- and time-efficient than for other
compound structures.

list of numbers(.(E,L)) :-
number(E), list _of numbers(L).
list _of _numbers([])-

| ?- listing(list_of _numbers).
list _of _numbers([A]|B]) :-
number(A),
list_of_numbers(B).
list_of numbers([])-

| ?- list_of_numbers([1,2])- % [1,2] == -(1,-(2,[1D) == [1I[21[]1]
yes

| ?- list_of numbers([1l,a,f(2)]).-
no
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@ Options for writing a lists of N elements:

@ canonical form:. (Elem, . (Elem, ...,. (Elemy,[])...))
@ equivalent list notation: [ El em, El em, . . ., El emy]

@ [ess convenient list notation: [ El em| [ El em, . .

@ The tree structure of lists and their implementation
Elem ; .\
Elem, .

Elem []

Elem,

Tail,

Elem,

Taily

EIemN

NULL

o[ Blemy|[] T ...]]

(Elem,, Tail,)
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@ [Head]Tail] = .(Head, Tail)
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@ the N-fold application of the above without nested brackets:

[Elem,Elem, ... ,Elemy|Tail] =[Elem|[El em, ..., El emy| Tail]]
@ whenthetailis[]:[Elem, Elem, ..., Elemy] =[Elem, Elem, ..., El emy|[]]
| ?- [1,2] =[XY]. = X=1, Y=[2] ?
| ?- [1,2] =[XY]. = X=1, Y=27?
| ?- [1,2,3] =[XY]. = X=1, Y=1[2,3] ?
| ?- [1,2,3] =[XY]. = Nno
| ?- [1,2,3,4 =1[XY]|Z]. = X=1, Y=2, Z=1[3,4 ?
| ?- L=11]_], L=1[_.2]_1]. = L =11,2|_A] ? %open ended
| ?- L =.(1,12,3|[]]). = L =101,2,3] ?
| ?- L=1011,2].(3,[])]. = L =101,2,3] ?
| ?- [ X [3-Y/XVY]]=.(A [A-B6]). = A=3, B=[6]/3, X=3, Y=[6] 7
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Ground and pattern-terms, list-patterns and open ended lists

@ (Reminder:) Ground term: term containing no variables

@ Pattern: a (usually non-ground) term, which “represents” all the terms which can be derived
from it by variable substitution.

@ List-pattern: pattern representing a list (but possibly other terms as well).

@ Open ended list: a list pattern representing lists of any length.

@ Closed list: a list(-pattern) representing lists of a given length.

Closed Lists represented Open Lists represented

[X] one element lists X any

[X,Y] two element lists [XIY] non-empty lists (with at least one element)
[X,X] lists with two identical elements [X,Y]Z] | listswith at |east 2 elements

[X,1,Y] | 3element lists, whereelement 2is 1 [a.b]Z] | listswithat least 2 lements: a, b, ...
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The logic variable

@ The concept of logic variable:

@ can appear as a term, or in terms, cf. variables in (list) patterns
@ variables can be made identical (ie. unified): e.g. two identical variables in a term.
@ the variable is a "first class citizen” in the world of (sub)terms

@ SML has pattern matching as well, but the pattern can only be used for decomposition, and not
for construction of terms; the variables in patterns always get ground values.

@ (Some new functional languages, e.g. the Oz language support the logic variable.)

@ Example: the goal below creates — in variable L — a list of two identical elements. The values
of the elements will be identical to variable X in the goal.

first_elem([E|_1, E)-
second_elem([_,E]_1, E).-

| ?- first_elem(L, X), second_elem(L, X). = L = [X,X]_A] ? ; no

@ |f any of the three variables gets instantiated, all others will be substituted with the same value:

| ?- Ffirst_elem(L, X), second_elem(L, X), X = apple.

— X = apple, L = [apple,apple]|_A] ? ; no
| ?- first_elem(L, X), second_elem(L, X), second_elem(L, wine)

— X = wine, L = [wine,wine|]_A] ? ; no
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Concatenating lists: the append/ 3 procedure

@ append(L1l, L2, L3): ListL3 is composed of the elements of L1 followed by those of L2
(notation: L3 = L1pL2) — two solutions:

appendO([], L2, L) - L = L2. append([1, L, L).
appendo([X]L1], L2, L) :- append([X]L1], L2, [X]L3]) :-
appendO(Ll, L2, L3), L = [X]L3]- append(L1, L2, L3).
> appendO([1,2,3],[4].A) > append([1,2,3].[4].A), write(A)
(2) > appendO0([2,3].[4]1.B)., A=[1]B] (2) > append([2,3].[4].B), write([1]B])
(2) > appendO([3].[4]1.C). B=[2]|C], A=[1]B] (2) > append([3].[4]1.C), write([1,2]|C])
(2) > appendO([1.[4]1.D).,C=[3]|D],B=[2]C].A=[1]B] (2) > append([1.[41.D), write([1,2,3|D])
(1) > D=[4]., C=[3|D], B=[2|C], A=[1]B] (1) > write([1,2,3,4])
BIP > C=[3,4], B=[2|C], A=[1]B] [1,2,3,4]
BIP > B=[2,3,4], A=[1]8] BIP > []
BIP > A=[1,2,3,4] L = [1,2,3,4] ?
BIP > []
L = [1,2,3,4] ?

@ The complexity of append0/append(L1, -...): runtime is proportional to the length of list L1.
@ Why is append/3 better than the append0/3?

@ append/3 is tail recursive, equivalent to a loop (does not use the stack)

@ append([1, ..., 10007, [0],[2, - - .]) fails immediately, append0(. . .) fails only after
1000 steps

@ append/3 can be used for splitting lists as well (see later), while append0/3 can not.
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Building lists from upfront — using open ended lists

@ The procedure append creates — at the very first reduction — the head of the resulting list!
(The output parameter is set to a list pattern with a yet unknown tail, cf. logic variables.)

append([], L, L).
append([X]L1], L2, [X]L3]) :- append(Ll, L2, L3).

| ?- append([1,2,3], [4], Result) — Result = [1]A], append([2,3], [4]. A)
@ Advanced tracing options for demonstrating this

@ library(debugger_examples) —programing the tracer, defi ning new debugger commands
@ new command: ‘N ( name)’ —names the argument at focus

@ standard command: ‘~ ( arg number )’ —focuses on a given argument

@ new command: ‘P [( name)]’ —writes out the named terms (the one specifi ed or all)

| ?- use_module(library(debugger_examples)).
| ?- trace, append(][1,2,3],[4,5,6],A).

Exit: append([3].,[4.5,6],[3,4,5,6]) 7
Exit: append([2,3],[4.5,6]1.[2,3,4,5,6]) -
Exit: append(][1,2,3],[4,5,6],[1,2,3,4,5,6]) ?
A=1]1,2,3,4,5,6] ? ; no

)

1 1 Call: append([1,2,3],[4,5,6], 543) ? ~ 3

1 1 Call: "3 543 ? N Result

1 1 Call: ~3 543 ? P = Result = _543

2 2 Call: append(][2,3],[4,5,6],_2700) ? P = Result = [1]_2700]

3 3 Call: append(][3].[4.5,6],_3625) ? P = Result = [1,2]_3625]

4 4 Call: append(][].,[4.,5,6], 4550) ? P = Result = [1,2,3]_4550]
4 4 Exit: append([].,[4.5.6],[4.5,6]) ? P = Result = [1,2,3,4,5,6]
3 3 6]

2 2

1 1
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Reversing lists

@ Naive solution (quadratic in the length of the list)

% nrev(L, R): List R Is the reverse of list L.

nrev([l. [D-

nrev([X|L], R) :-
nrev(L, RL),
append(RL, [X], R).

@ A solution which is linear in the length of the list

% reverse(R, L): List R i1s the reverse of list L.
reverse(R, L) :- revapp(L, [], R)-

% revapp(Ll, L2, R): The reverse of L1 prepended to L2 gives R.

revapp([]., R, R).
revapp([X]L1], L2, R) :-
revapp(L1l, [X]L2], R).

@ The lists library contains the definition of procedures append/3 and reverse/2.
@ Loading the library:

- use_module(library(lists)).
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append and r evapp — building lists in two directions

@ Prolog implementation

append([], L, L). revapp([], L, L).
append([X]L1], L2, [ X L3]) :- revapp([X]L1], L2, L3) :-
append(L1, L2, L3). revapp(L1, [ X| L2], L3).

@ C++ implementation

struct link { link *next;
char elem;
link(char e): elem(e) {}

}:
typedef link *list;
list append(list listl, list list2) list revapp(list listl, list list2)
{ list list3, *Ip = &li1st3; { list 1 = list2;
for (list p=listl; p; p=p->next) for (list p=listl; p; p=p->next)
{ list newl = new link(p->elem); { list newl = new link(p->elem);
*I'p = new; |p = &new - >next; new ->next =1; | = new;
} }
*Ip = list2;
return list3; return I;
by by
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Splitting lists using append/ 3

?- append(A, B, [1,2,3,4])-

A=11

B=[1,2,3,4] A=[1]A1]

?- append(Al, B, [2,3.,4])-

|A=[1.B=[1,2,3,4]

% append(Ll, L2, L3):

% The L3 list is built by A1=[] Aslzinel

% concatenating elements B=12.3.4] 2- append(A2, B, [3,4]).
% of lists L1 and L2. [A=[1]. B=[2,3,4]

append([]. L, L). A2=[] A2=[3]A3]

append([X]L1], L2, [X]L3]) :-

B=[3.4]
append(L1, L2, L3).

?- append(A3, B, [4])-

[A=[1,2],B=[3,4]]

| ?- append(A, B, [1,2,3,4]). A3=[] A=L41A4]
A=1[1, B=1[1,2,3,4] ? ; -
A = EI_] B :[[2 3 4]]? - B=[4] ?- append(A4, B, [1)-
A= I1.51, B = [3.4] 7 - T2, 316041

] ] » LA ] Ad=
A=1[1,2,3], B = [4] ? ; ML
A=11,2,3,4],B=1[1"7;
no [A=[1,2,3,4],B=[1]
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Variations on append 1. — Appending three lists

@ The search space of append/3 is finite, if the first or the third argument is a closed list (or both).

@ append(L1,L2,L3,L123): L1 P L2 B L3 =1L123

append(L1, L2, L3, L123) :-
append(L1, L2, L12), append(L12, L3, L123).

@ Not efficient, eg.: append([1,---, 100],[1,2,3],[1], L) uses 203 steps instead of 103!
@ Not suitable for splitting lists — creates infinite choice points

@ An efficient version, suitable for splitting a given list to three parts:

% L1 & L2 & L3 = L123, where either L1 and L2, or L123 is given (is a closed list).
append(L1, L2, L3, L123) :-
append(L1, L23, L123), append(L2, L3, L23).

@ The first append/3 call produces an open ended list:
| ?- append([1,2], L23, L). = L = [1,2]L23] ?

@ The instantiation of L3, i.e. whether it is open or closed, does not matter.
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Pattern search in lists using append/ 3

@ Elements occuring in pairs

% in_pair(List, Elem): Elem is an element of List
% which has an i1dentical neighbour to the right in the list.
in_pair(L, E) :-

append(_, [E,E|_], L)-

| ?- in_pair([1,8,8,3,4,4], E).
E=8?;;E=47?;no

@ Stuttering sublists

% stuttering(L, D): D 1s a nonempty sublist of L,
% which 1s followed by an i1dentical sublist.
stuttering(L, D) :-

append(_, Tail, L),

D= L.I_1,

append(D, End, Tail),

append(D, _, End).

| ?- stuttering(|2,2,1,2,2,1], D).
D=12] ? ;D =12,2,1]1 ? ; D=1]12] ? ; no
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Search in lists

@ member(E, L):E isthe element of list L

member(Elem, [Elem|_]). member(Elem, [Head|Tail]) :-
member(Elem, [_|Tail]) :- ( Elem = Head
member(Elem, Tail). ; member(Elem, Tail)
).

@ Possible uses of member/2

@ A Yes-No question:

| ?- member(2, [1,2,3])- = yes
@ Enumerating list elements:
| ?- member(X, [1,2,3]).- = X=17?2;X=27?;X=37 ;no
| ?- member(X, [1,2,1]). = X=17?;;X=27?;;X=17 3, no
@ Enumerating the common elements of lists — uses both above call-patterns:
| ?- member(X, [1,2,3]),
member(X, [5,4,3,2,3]).- = X=27?2;;X=37?2;X=373;no

@ Making a term an element of a list — creates an infinite choice!

| ?- member(l, L). = L = [1]_A] ? ; L=[A,1]_B] ? ;
L =[A,B,1].C] ? ;

@ The search space of member/2 is finite, if the second argument is a closed list.
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Generalization of menber/ 2: sel ect/ 3

@ select(Elem, List, Rest): Removing Elem from List results in list Rest.

select(Elem, [Elem]Rest], Rest). % The head is renpoved, the tail rennins.
select(Elem, [X]Tail], [X|RestO]) :- % The head renai ns,
select(Elem, Tail, Rest0). % the elenent is renoved fromthe Tail.

@ Possible uses:

| ?- select(1, [2,1,3], L). % To renove a given el enent
L =102,3] ? ; no

| ?- select(X, [1,2,3], L). % To renove an arbitrary el enent
L=[2,3], X=1 ? ; L=[1,3], X=2 ? ; L=[1,2], X=3 ? ; no

| ?- select(3, L, [1,2]). % To insert a given el enent!

L =103,1,2] ? ; L =1]1,3,2] ? ; L=1]1,2,3] ? ; no
| ?- select(3, [2]L], [1,2,7,3,2,1,8,9,4]).-
% Can 3 be inserted into [1,...]
no % so, that we get [2,...]7?
| ?- select(l1, [X,2,X,3], L).
L =[2,1,3], X=17?;L=1_[1,2,3], X=17; no

@ Library lists contains the definition of procedures member/2 and select/3.

@ The search space of select/3 is finite, if the 2nd or the 3rd argument is a closed list.
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Permutation of lists

@ permutation(List, Perm): the permutation of List is list Perm (definition quoted from
library(lists):

permutation([], [1)-

permutation(List, [First]Perm]) :-
select(First, List, Rest),
permutation(Rest, Perm).

@ Possible uses:

| ?- permutation([1,2], L).
L =101,2] ? ; L=1[2,1] ? ; no

| ?- permutation([a,b,c], L).
L = [a,b,c] ? ; L =[a,c,b] ? ; L
L = [b,c,a] ? ; L = [c,a,b] ? ; L
no

| ?- permutation(L, [1,2])-
L = [1,2] ? ;
infinite search space

[b,a,c] ? ;
[c.b,a] ? ;

@ |f the first argument in permutation/2 is unknown, then the search space of the select call is
infinite!
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Binary tree

@ Different definitions of a binary tree data type:

@ (Reminder:) Textual definition: A binary tree of integers can be
@ either a leaf (Ieaf(V)), where V is an integer
@ or a node (node(L,R)), where L and R are binary trees of integers
@ Using mathematical notation:
itree ={leaf(t) | i€ int }U{ node(l,r) | [,r € itree }
@ Using the type-notation to be introduced:
- type i1tree == {node(itree, itree)} \/ {leaf(int)}.
- type itree ---> node(itree, i1tree) | leaf(int).
@ A Prolog predicate for checking whether a term belongs to the data type:

itree(leaf(V)) :-
integer(V).

1tree(node(L,R)) :-
itree(L), itree(R).

@ Such a datatype is called disjunctive union, because the sets in the union are distinguished by
the functors (leaf/1, node/2)
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Description of types in Prolog

@ Type description: a definition of a set of (ground) Prolog terms
@ Basic type descriptions: int, float, number, atom, any

@ Building new types:
{str(Ty, .-, T,) }={stres, ---, &) | e1 €Ty, ---, e, €T, },n>0
Example: {person(atom,atom, int)} is the set of structures with the functor person/3,
whose first two arguments are atoms, the third is an integer.

@ Union of types (viewed as sets) can be created using the \ / operator.
{person(atom,atom, int)} \/ {atom-atom} \/ atom

@ A type declaration can be named (in a comment): :- type tnane == tdescription.
- type tl == {atom-atom} \/ atom.,
- type man == {man-atom} \/ {nothing}.

@ Disjunctive union: a union in which all members have a different functor. If Sy,..., S, have
different functors, the simplified (Mercury) notation can be used:
-type T ={ S} ..\ {5, }. =:-type T -——> S5 ; ...; S,-
- type man ---> man-atom; nothing.
- type tree ---> leaf(int) ; node(tree,tree).
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@ Parametric types — examples
- type pair(Tl, T2) ---> T1 - T2.

type tree(T) ---> leaf(T)

; nhode(tree(T),tree(T)).

type assoc_tree(KeyT, ValueT)

== tree(pair(KeyT, ValueT)).
I- type dictionary ==

type word ==

@ Syntax of type declarations

(type declaration )

( named type)

{ type construction )

( discriminated union)
( constructor )

( type description )

(typeid)
(type name)
(type variable)

atom.

<
{
<
<
<

assoc_tree(word, word).

( named type) | ( type construction )
I- type (typeid) == (type description) .

I— type (typeid) -—-> (discriminated union) .
( constructor) ; ...
( name constant ) | ( structure name) (( type description), ...)
typeid) | (typevariable) | { ( constructor) } |

type description) \/ ( type description)

type name) | (type name)((typevariable), ...)

name constant )
variable)

% a structure *-" with two arguments,

% first arg. T1l, the second T2 type.
% Binary tree made up of elements with
% type T

% Tree of pairs made of

% KeyT and ValueT types
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Declaration of predicate-type

@ Declaring the argument types of a predicate
. - pred (procedure name )( (typeid), ...)

@ Example:
- pred sum_tree(tree(int), Int).

@ Declaring the modes of predicate arguments (Optional, multiple declarations allowed.)

: - node (procedure name )( (mode id), ...) where (modeid) ::=i n|out |i nout.
@ Examples:

- mode sum_tree(in, 1In). % checking the sum of a tree

- mode sum_tree(in, out). % calculating the sum of a tree

- mode sum_tree(out,in). % building a tree with a given sum

@ Mixed type- and mode declarations
. - pred (procedure name )( (typeid): : (modeid), ...)

@ Example:

- pred between(int::in, Int::in, int::out).
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Mode declarations: the notation used in the SICStus manual

@ The SICStus manual uses a different notation for marking the in/out arguments, such as:

sum_tree(+T, ?Sum).

@ Mode notation:

@ + input argument (non-variable)

@ - outargument (variable)

@ : procedure argument (in meta-procedures)
@ ? any
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The summary of Prolog syntax

@ The principles of Prolog syntax

@ All program elements are terms!

@ The necessary connectives (*,>, ;, -- -->)are standard operators.
@ We classify the program elements according to their functor:
@ query: ?- Coal .

Goal is run, and the variable substitutions are displayed (this is the default in the so
called top-level interactive shell).

@ command: - Goal .
The Goal is run silently. Use: eg. for placing declarations (operator, ...).

@ rule: Head :- Body.
The rule is added to the program.

@ grammar rule: Head --> Body.
The grammar rule is transformed to a Prolog clause and is added to the program (see
DCG grammars).

@ fact: Al other terns.
Is added to the program as a rule with an empty body.
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Variants of the Prolog language

@ Two modes of execution in the SICStus system

@ | so — Corresponds to the ISO Prolog standard.

@ si cst us — Compatible with earlier versions.

@ Switching between execution modes: set _prol og_fl ag(l anguage, Mbde).
@ Differences:

@ Minor syntactic details, like the ox1ff hex format for numbers is available only in ISO
mode,

@ Minor differences in the behaviour of in-built predicates.
@ No differences in workings of predicates described so far.
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Syntactic sugar — summary, practical advices

@ Canonical form of expressions involving operators:

@ Enclose the subterms in parentheses according to operator priority and kind, e.g. -a+b*2 =
((-a)+(b*2)).
@ Transform the term to canonical form:
(A Inf B) = Inf(A,B), (Pref A) = Pref(A), (A Postf) = Postf(A)
Example: ((-a)+(b*2)) = (-(@)+ *(b,2)) = +(-(a),*(b,2)).
@ Tricky cases:
@ The comma, when used as an atom, should be quoted: eg. (pp.,(qg;rr)) =
7,7 (pp, 5 (qg,rr)).
@ - Nunber = negative number constant, but - & her =- prefix form.
Example: -1+2 = +(-1,2), but -a+b = +(-(a),b).
@ Nane(...) = compound term;
Name (...) = aterm with a prefix operator. Examples:
-(1,2) = -(1,2) (unchanged), but
- 1.2 = -C.7(1.2)).
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Syntactic sugar — lists, others

@ Transforming lists to their canonical form.

@ Insert an empty list as a tail, where needed:
[1.2] = [1.2]011- LCOX1Y11 = LCXIY1ILO]

@ (Repeatedly) eliminate the commas: [Elem1,Elem2...] = [Eleml][Elem2...1].
[1.21011 = [1112]1[11]
[1.2.31[11 = [11[2.31[111 = [11[2]1[31[111]

@ Transform to canonical form: [Head|Tail] = .(Head,Tail).
(11210111 = -(2.-@. D). [IXIYIIOl = -CGYDLID

@ Other syntactic sugar:

@ Character-code notation: 0>Char.
0’a = 97, 0°’b = 98, 0’c = 99, 0’d = 100, 0’e = 101

@ String: "xyz..." = Iis the list containing the character codes of xyz. ..
"abc" = [97,98,99], " = [1, "e" = [101]

@ Curly braces: {Expr} = {}(Expr) (a structure with name {3} and one argument — the {}
pair of characters is a lexical element on its own, namely a name constant).

@ Binary, hexa etc. notation (only in iso mode), eg. 00101010, Oxla.
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Syntax of terms — two level grammars

@ An excerpt from the syntactic description of terms, in a “traditional” language:

(term) ::= member )

term ) (additive operator) ( member)

(

<
( member ) ::= (factor)
| (member) ( multiplicative operator ) ( factor)
<

(factor) ::= (number) | (identifier)| ( (term))

@ The same with a two level grammar:

(term) = (term 2)

(term N ) == (term N-1)
| (term N) (operator of priority N ) (term N-1)

(term 0) ::= (number) | (id)| ( (term2))

{the priority of additive and multiplicative operators are 2 and 1, resp.}
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{ program element) ::=

(term N ) =

(term 1000) ::=

(term 0) ::=

(term 1200) ( full stop )

<

( (layout) (term N )
( -1) (op N xfx) (term N-1)
(term N-1) (op N xfy) (term N )
(term N ) (op N yfx) (term N-1)
(term N-1) (op N xf)
(term N> (op N yf)

< 1)

< )

<

term 999 ) , (term 1000 )

name) ( (arguments) )
{ The ( immediately follows the { name )!}
( (term1200)) | { (term1200)}

(list) | (string)
(name) | (number) | (variable)

LP-144
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Syntax of terms — continued

(opNK) = (name) {if (name ) was previously declared an operator
with priority N and kind K }
(arguments) ::= (term 999 )
| (term999), (arguments)
(list) ::= []
| [ (listexpr) ]
( listexpr) ::= (term 999 )

(term 999) , (listexpr)
| (term999) | (term 999)
<

(number) ::= unsigned number )
| + (unsigned number )
| - (unsigned number )
(unsigned number) ::= ( natural number)

| (float number)
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Syntax of terms — comments

@ In (term N ) the ( layout) is needed only if the term following it starts with an opening
parenthesis.

| ?- op(500, fx, succ).
yes

| ?- write_canonical(succ (1,2)), nl, write _canonical(succ(l,2)).
succ(’,’(1,2))
succ(1,2)

@ The{ (term) } isequivalent with the {} ( (term)) structure, this is important, e.g. for the
DCG grammar notation.

| ?- write_canonical({a}).

4@

@ (string) is a sequence of characters enclosed in double quotes (" characters) — by default this
Is equivalent to the list of codes of these characters.

| ?- write("baba').
[98,97,98,97]
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The lexical elements of Prolog 1. (reminder)

@ (name)

@ a sequence of alphanumeric characters starting with a lower case letter (lower and upper case
letters, digits and underscore characters are allowed as alphanumeric characters);

@ a sequence of one or more graphic characters (+- */ \ $M<>=" ~; | ?@#&);

@ the! or; characters on their own;

@ the[] {} character pairs;

@ any sequence of characters in between single quotes (' ), in which escape-sequences starting
with a backslash (\ ) can be placed.

@ (variable)

@ a sequence of alphanumeric characters starting with a capital letter or an underscore.

@ Variables having the same character sequence are considered the same, if they occur in the
same clause, otherwiaw they are considered different;

@ exception: all occurrences the void variable () are different.

Deklarativ programozés. BME VIK, 2006. tavaszi félév ' (Logikai Programozas)



LP-148

The lexical elements of Prolog 2.

@ (natural number)

@ a sequence of (decimal) digits ;

@ a sequence of binary, octal or hexadeximal digits, denoting an integer in the appropriate base,
in such cases the number should be prefixed with the characters Ob, 0o, 0Ox, respectively
(only available ini so mode)

@ character code constant of the form O’ ¢ where c is a single character (or an
escape-sequence denoting a single character)
@ (floating point number )

@ must contain a decimal point
@ at least one (decimal) digit on both sides of the point
@ an optional exponent separated by a letter e or E
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Comments and formatting characters

@ Comments

@ From the %percentage sign until the end of the line
@ or from the / * pair of characters up until the nearest */ sequence of characters.

@ Layout
@ space, new line, tabulator etc. (non-visible characters)

@ comment
@ Formatting of the program text

@ Layout (space, new line etc.) can be placed freely;
@ exception: no layout character should be placed between the name of a structure and the

subsequent open parenthesis;
@ it is compulsory to place layout between a prefix operator and a ( ;

@ (full stop): a. character followed by layout.
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The introductory example of the old lecture book: path search

@ The task:

@ Let’s consider a set of (bus)lines.
@ The two endpoints and the lengths of all the lines are given.

@ Let’s write a Prolog procedure which determines whether two points can be connected with
exactly N joining lines.

@ Rewriting: we search for path between two points in a weighted and unguided graph. Edges:

% line(A, B, L): The 1s a line between cities A and B and i1ts length i1s L km.
line("Budapest’, ’Prague’, 515).

line(CBudapest’, *Vienna’, 245).

line(’Vienna’, “Berlin’, 635).

line(’Vienna’, ’“Paris’, 1265).

@ Directed edges

% way(A, B, H): We can get from A to B with a line of length L.
way(Start, Destination, L) :-

( line(Start, Destination, L)
line(Destination, Start, L)

).
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@ Path with given number of steps (edge-sequence) and its length:

% path(N, A, B, L): There exists a path consisting of (exactly)
% N sections which has a length of L.

path(0, To,

path(N, From, To, L) :-

N > 0,

N1 1S N-

To, 0).

1,

way(From, Between, L1),
path(N1, Between, To, L2),
L 1s L1+L2.

@ An example:

| ?- path(2,
L =
L =
L =
no

Paris’, To, L).

1900, To
2530, To
1510, To

’Berlin’ ? ;
’Paris’ ? ;
Budapest” ? ;
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Acyclic path search

@ Loading the library to import procedures with given functors.
- use_module(library(lists), [member/2]).

@ Helper argument: the list of the visited cities in reverse order

% path_2(N, A, B, L): There exists an acyclic path cosisting of
% (exactly) N sections which has a length of L.
path 2(N, From, To, L) :-

path_2(N, From, To, [Fronj, L).

% path 2(N, A, B, Excluded, L): There exists an acyclic path
% of N sections and length L, which does not touch any cities In Excluded.
path 2(0, To, To, Excluded, 0).
path 2(N, From, To, Excluded, L) :-
N > 0, N1 is N-1, way(From, Between, L1),
\+ nenber (Bet ween, Excl uded),
path 2(N1, Between, To, [Between| Excluded], L2), L iIs L1+L2.

@ An example run:

| ?- path_2(2, ’Paris’, To, L).
L = 1900, To = *Berlin” ? ;
L = 1510, To = ”Budapest” ? ; no
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Further improvement: acyclic path search with route planning

@ Observation: the (reversed) route is built up in the Excluded list.

@ A new argument is needed in the recursive procedure to return the forward route!

- use_module(library(lists), [member/2, reverse/2]).

% path_ 3(N, A, B, Route, L): There exists an acyclic Route route between
% A and B consisting of (exactly) N sections which has a length of L.
path 3(N, From, To, Route, L) :-

utvonal 3(N, From, To, [From], RRoute, L),

reverse(RRoute, Route).

% path_3(N, A, B, RRouteO, RRoute, L): There exists an acyclic route
% between A and B of N sections and length L which does not go through RRouteO.
% RRoute = (reverse of route A — B) & RRouteO.
path _3(0, To, To, RRoute, RRoute, 0).
path 3(N, From, To, RRouteO, RRoute, L) :-

N > 0, N1 is N-1, way(From, Between, L1),

\+ member(Between, RRouteO),

path_3(N1, Between, To, [Between| RRouteO], RRoute, L2), L is L1+L2.

| ?- path_3(2, ’Paris’, _, Route, L).
L = 1900, Route [Paris’,’Vienna’,’Berlin’] ? ;
L = 1510, Route = [’Paris’,’Vienna’,’Budapest®] ? ; no
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Representation of weighted graph as a list of edges

@ The representation of the graph

@ the graph is a list of edges,
@ the edge is a structure with three arguments,
@ arguments: the two end-points and the weight.

@ Type definition

%
% :
% :
% -

type edge ---> edge(point, point, weight).
type point == atom.

type weight == iInt.

type graph == list(edge).

@ Example

network([edge(’Budapest’,’Vienna’,b245),
edge(’Budapest’, ’Prague” ,515),
edge(’Vienna’,’Berlin’,635),
edge(’Vienna’,’Paris”,1265)]).
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Finding a path free of repetitions in a graph represented as a list

- use_module(library(lists), [select/3]).

% path_4(N, G, A, B, P, L): There exists in the graph G a path P
% of N sections and length L going from A to B.
path 4(0, Graph, To, To, [To], 0).
path_4(N, Graph, From, To, [From]Route], L) :-
N > 0, N1 is N-1,
select(Edge, Graph, Graphl),
edge_endpoints_length(Edge, From, Via, L1),
path 4(N1, Graphl, Via, To, Route, L2),
L 1s L1+L2.

% edge _endpoints_length(Edge, A, B, L): The endpoints of
% Edge undirected edge are A and B, i1ts length i1s L.
edge_endpoints_length(edge(A,B,L), A, B, L).
edge_endpoints_length(edge(A,B,L), B, A, L).

| ?- network( Graph), path_4(2, Graph, ’Budapest”’, , Route, L).
L = 880, Route = [’Budapest’,’Vienna’,’Berlin’] ? ;
L 1510, Route = [’Budapest’,’Vienna’,’Paris’] ? ;
no
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Binary trees — the leaf of the tree

@ Let’s write a predicate to decide whether a given value exists in a leaf of the tree!

@ % leaf of tree(Tree, Value): The Tree binary tree contains a leaf with val ue Val ue.
leaf of tree(leaf(V), V). %if the tree is only a | eaf and the val ue inside

%is equal to the searched value then *‘true’
leaf of tree(node(L, ), V) :-

leaf of tree(L, V). %if in left tree, then in full tree as well
leaf of tree(node( ,R), V) :-

leaf of tree(R, V). %if in right tree, then in full tree as well
@ The underscore is a void variable, its occurences are all different variables!

@ Examples: testing (1), enumerating the leaves of a tree (2),
enumerating trees with a given leaf (3) (oo search space).

| ?- leaf _of tree(node(node(leaf(l),leaf(2)),leaf(7)), 2). — yes (D
| ?- leaf _of tree(node(node(leaf(l),leaf(2)),leaf(7)), 3). = no (@D
| ?- leaf_of_tree(node(leaf(l),leaf(7)), E). = E =172 ; E=7 ? ; no (2)
| ?- leaf _of _tree(Tree, 3). — Tree = leaf(3) ? ; Tree = node(leaf(3), A) ? ;
)
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Conjuctive and disjuctive traversal of compound structures

@ A compound data structure can traversed in two ways:

@ Conjuctively: traversal of parts is in an AND relation, usually gives one result
@ like: the sum of tree (sum_tree), tree checking (itree), tree printing:

%treeout(Tree): Tree is printable (always true :-). Prints the tree as a side effect.

treeout(leaf(V)) :-

write(@), write(V). wite(X) is a built-in pred., prints X
treeout(node(L,R)) :-

write(C ("), treeout(L), write(C -- 7), treeout(R), write(’)’).
| ?- treeout(node(node(leaf(1),leaf(8)),leaf(7))). = ((@1 -- @8) -- @7)
yes

@ Disjunctively: traversal of parts is in an OR relation, new result at backtracking
@ like: listing of tree leaves (tree_leaf)

@ The disjunctive, enumerating traversal can easily be complemeted with further conditions

@ We search the leaves of a tree within the (5, 10) interval:

| ?- _Tree = node(node(leaf(l),leaf(8)),leaf(7)), leaf of _tree(_Tree, E), 5 < E, E < 10.
— E=87?; E=77; no

| - Tree = (...), leaf of tree(_Tree, E), 5 < E, E < 10, write(E), write(C ), fail.
= 87 = no

@ The fail built-in predicate always “fails” , can be used for e.g., closing an enumeration loop.
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Omitting leaves from a binary tree

@ Write a predicate to decide whether a value exists in a leaf of a tree! Return the tree which
remains of the original after the omission of the found leaf.

%tlr(Tree, Value, Remainder): Wth the om ssion of the Value | eaf of the
% Tree binary tree Remainder is the remaining tree. (tlr = tree_| eaf renni nder)
tlir(node(leaf(V),T), V, T). %if the left branch is the wanted | eaf

% then the right branch is the remaining tree
tlr(node(T, leaf(V)), V, T). % the sanme for the right |eaf
tlr(node(LO,R), V, node(L,R)) :=-

tir(LOo, V, L). %if the |eaf can be omtted fromthe left tree
%then its remai nder conpleted with the right
%tree will be the remainder of the full tree
tlr(node(L,RO), V, node(L,R1)) :-
tIr(RO, V, R1). % the sanme for the right branch

@ The tlr/3 predicate can be used for checking and decomposing the tree as well:

| ?- tlr(node(leaf(1l),node(leaf(2),leaf(3))), 2, T). =
T = node(leaf(l),leaf(3)) ? ; no
| ?- thr(node(leaf(l),node(leaf(2),leaf(3))), 7, T). = no
| ?- thr(node(leaf(l),node(leaf(2),leaf(3))), X, T). =
node(leaf(2), leaf(3)), X ;
node(leaf(1),leaf(3)), X
node(leaf(1),leaf(2)), X

— -
I

17? ;
2 ? ;
3? ; no
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Insertion of a leaf into a binary tree

@ |et us write a predicate to insert a leaf with given value into a tree in all possible ways!

@ \We don’t have to write it, we have already done so! The tir predicate is good for this as well:

%tlr(Tree, Value, Remainder): Wth the om ssion of the Value |eaf of the
% Tree binary tree Remainder is the remaining tree. Tree - Val ue = Renmi nder.

%tlr(Tree, Value, Remainder): The Tree binary tree can be conposed by
%inserting a Value leaf into the Remai nder tree. Tree = Renmi nder + Val ue.
tlir(node(leaf(V),T), V, T). % A leaf inserted into T tree: a single |eaf
(...) %tree is put in front of T

@ Examples:

| ?- tir(Tree, 2, leaf(1)), treeout(Tree), write(C *), fail.

@2 -- @1) (@1 -- @2) — no

| ?- thir(Tree0, 2, leaf(1l)), tlr(Tree, 3, Fa0), treeout(Tree), write(” ), fail.
(@3 -- (62 -- 01)) (82 -- 61) -- 03) ((3 -- 02) -- 01) ((62 -- @3) -- 01)

(02 -- (@3 —- 01)) (62 -~ (01 —- @3)) (@3 —- (01 -- @2)) ((01 -~ @2) -- @3)

(@3 -- @1) -- @2) (@1 -- @3) -- @2) (01 -- (@3 -- @2)) (@1 -- (@2 -- @3)) = no

four_leaved(X, Y, Z, U, Tree) - % Tree is made of X, Y, Z U |eaves
tir(Tree0, Y, leaf(X)), tir(Treel, Z, Tree0), tir(Tree, U, Treel).

| ?- findall(Tree, four_leaved(1,3,4,6,Tree), Trees), length(Trees,L). — L = 120, Trees = (...)
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Example: producing a term with given value

@ The task: write a Prolog program for the following problem:

@ Using the numbers 1, 3, 4, 6 and the four basic arithmetic operators, produce 24!
@ All four numbers have to be used exactly once, in any order.
@ The four operators can be used arbitrarily, with any number of parentheses.

@ \We already have a predicate (four_leaved/5) building any tree from four numbers.

@ Define a predicate which constructs an arithmetical term from a tree!

% tree_term(Tree, Term): Term is an arithmetical term, identical in its shape
% to Tree, built of the same numbers, using the the four basic operators.
tree_term(leaf(V), V).
tree_term(node(L,R), Exp) :-

tree_term(L, E1),

tree_term(R, E2),

base4(E1, E2, Exp).

% based4(X, Y, Term): Term is composed of X and Y with one of the four basic operators.
base4(X, Y, X+Y). base4(X, Y, X-Y).
base4(X, Y, X*Y). based4(X, Y, X/Y).

| ?- tree_term(node(leaf(l),node(leaf(2),leaf(3))), Expr).
Expr = 1+(2+3) ? ; Expr = 1-(2+3) ? ; Expr = 1*(2+3) ? ; Expr
(...)

Expr = 1+2/3 ? ; Expr = 1-2/3 ? ; Expr = 1*(2/3) ? ; Expr

1/(2+3) ? ;

1/(2/3) ? ; no
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Example: producing a term with given value (continued)

@ Predicates defined earlier:
@ four_leaved/s lists trees constructed of 4 given values

@ tree term/2 lists arithmetical terms identicalto a tree

@ Using these a predicate solving the task can be easily written:
% four_leaved value(X, Y, Z, U, Value, Expr): Expr is a term built of X, Y,
% Z, U and the four basic operators, and evaluates to the value of Value.

four_ leaved value(X, Y, Z, U, Value, Expr) :-
four_ leaved(X, Y, Z, U, Tree),
tree_term(Tree, Expr),
Expr =:= Value.

| ?- four_leaved value(1,3,4,6,24,EXpr).
Expr =6 ? (1?2 37?4) ? ; no

@ Notes
@ X, Y, Z and U can be instantiated not only with specific values but with ground arithmetic

expressions as well.

@ value is Expr in place of Expr =:= Vvalue would not work! Why?

' (Logikai Programozas)
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