THE SYNTAX OF PROLOG — FIRST APPROXIMATION
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Predicates, clauses

LP-47

The format of Prolog programs

@ Example:
% A definition of the predicate with two clauses, the functor is: sum_tree/2
sum_tree(leaf(val), Val). % 1. clause, fact
sum_tree(node(Left,Right), S) :- % head \
sum_tree(Left, S1), % goal \
sum_tree(Right, S2), % goal | body | 2. clause, rule
S is S1+S2. % goal / /
@ Syntax:
(Prolog progran) ::= (predicate) ...
(predicate ) n= (clause) ... {with the same functor}
(clause ) n= (fact).o|
(rule)... {functor of the clause = functor of the head}
(fact) = (head)
(rule) = (head) :- (body)
(body) = (goal), ...
(goal) = (term)
(head ) = (term)
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Prolog terms

@ The recommended form of Prolog programs:

@ Place clauses of a predicate one after the other, do not put any empty lines in between them.

Separate predicates by empty lines.

@ Write the head of the clause at the beginning of the line, while each body goal with an
indentation of a few spaces, preferably in a separate line.

@ Example — a clause head as a term:
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% sum_tree(node(Left,Right), S) % compound term, functor is sum_tree/2
% -
% | | |
% structure name | argument, variable
% \- argument, compound term
@ Syntax:
(term) := (variable) | {no functor}
(constant) | {Functor: ( constant)/ 0}
(compound term) | {Functor: (structure name )/ {arity )}
( (term)) {Because of operators, see later}
(constant ) = (name constant) | {also called {atom)}
( number constant )
(number constant) = (integer) |
( float number )
(compound term) = (structure name) ( (argument), ...)
(structure name) = (name constant)
(argument ) = (term)
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Lexical elements
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@ Examples:

% variable:

% name constant (atom):
% number constant:
% not a name constant:

Fakt FAKT _fakt X2 2 _

fakt = “fakt” “Istvan” [ ; 7,7 += ** \= = "\\=~
0 -123 10.0 -12.1e8
1=

% not a number constant: 1e8 1l.e2
@ Syntax:
(variable ) := (capital letter ) ( alphanumeric char). . .|
_ (alphanumeric char). ..
(name constant ) = ' (quoted character)...” |
(lower case letter ) ( alphanumeric char ). . .|
(sticky char)...|t |5 |1 1{}
(integer) ::= {signed or unsigned digit sequence }

( float number)

.= {asequence of digits with a compulsory decimal point
in between, with an optional exponent}

(quoted character) = {anynon’ andnon\ character} |\ (escape sequence)
(alphanumeric char) ::= (lower case letter) | (upper case letter) | (digit) | _
(sticky char ) == KLV IS I= I~ ] 1?7 @ # | &
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Standard operators

1200 xFx
1200 fx
1100 xfy
1050 xfy
1000 xfy

900 fy
700 xfx

500 yfx
400 yfx

200 xFx
200 xfy
200 fy

=\= > >= 1iIs
@< @=< @> @>=
+ -/\\/
*/ // rem

mod << >>
*%x

n

-\

Other built-in operators of SICStus Prolog

1150 fx dynamic multifile
block meta_predicate

900 fy spy nospy

550 xfy :

500 yfx #

500 fx +
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Syntactic sweetener: operators

@ Example:
% S is -S1+S2 is equivalent to the term: is(S, +(-(51),S2))

@ Terms with operators
(compound term ) ::=

(structure name ) ( ( argument), ...) {until now we had only this}
| (argument) (operator name) ( argument) (infix term )
| (operator name) (argument) ( prefix term )
| (argument) ( operator name ) ( postfix term )
(operator name) ::= ( structure name ) {if declared as an operator}

@ Built-in predicates handling operators:

@ op(Priority, Type, OpName) or op(Priority, Type, [OpName,,OpName,,...]):
@ Priority: integer between 0-1200
@ Type: az yfx, xfy, xfx, fy, fx, yF, xf - one of these name constants
@ OpName: any name constant
@ |f priority is positive the operator(s) are defined, in case of 0 they are deleted.
@ current_op(Priority, Type, OpName): lists the current operators.
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Characteristics of operators

@ An operator is characterised by its type and priority.
@ The type determines the operator-class (the way the operator is placed) and the associativity:

Type Class Interpretation
left-assoc. | right-assoc. | not-assoc.
yFx xFy xFx infix X FfY=F, Y)
fy x prefix f X=fX)
yf xF postfix X f=FfX)

@ If multiple operators are present the parenthesisation depends on the priority and associativity:

@ a/b+c*d = (asb)+(c*d) because the priority of /7 and * is 400, which is smaller than the
priority of + (500) (smaller priority = stronger binding).

@ a+b+c = (a+b)+c as the + operator’s type is yTx, thus it is left-associative (letter y is on the
left side of yfx) — binds to the left, parentheses are from the left to the right

@ a"b"c = a’ (b"c) as ™ operator’s type is xFy, therefore it is right-associative (binds to the
right, parentheses are from the right to the left)

@ a=b=c syntactically bad, as the = operator’s type is xfx, thus it is not-associative.
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Operators: placing of brackets

@ Let us set off from a fully parenthesised term containing multiple operators.
@ The priority of a subterm is the priority of its (outermost) operator.

@ [f a term with priority ap appears as an argument to an operator with priority op then the
parenthesises around it can be omitted if:

@ ap < op, for example a+(b*c) = a+b*c (ap = 400, op = 500)

@ ap = op, and the term is the right argument of a right-associative operator, for example
a (b"c) = ab”c (ap = 200, op = 200)

@ qp = op, the left argument of a left-associative operator, for example (1+2)+3 = 1+2+3.
Exception: if the operator of the left argument is right-associative, thus the previous
condition can be applied.

@ An example for the exception:

@ :- op(500, xfy, +M).
| ?- - write((1 +* 2) + 3), nl. = (1+™2)+3
| ?- = write(1 +* (2 + 3)), nl. = 1+"2+43

@ Thus: in case of conflict the associativity of the first operator ,,wins”.
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Use of operators

@ What are operators good for?
@ convenient writing of arithmetic procedures , like X is (Y+3) mod 4
@ symbolic processing of expressions (like symbolic derivation)
@ for writing down clauses themselves (:- and -, ~ are both operators)
@ clauses can be handled over to meta-predicates, like asserta( (p(X):-q(X),r(X)) )
@ to make heads and procedure calls more readable:
- op(800, xfx, [grandparent, parent]).

Gy grandparent N :- Gy parent Sz, Sz parent N.
@ to make data structures more readable, like
- op(100, xfx, [-1)-
acid(sulphur, h.2-s-0.4).
@ Why are operators bad?

@ Itis asingle global resource, it can cause problems in a larger project.
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Operators —additional comments

@ It is not allowed to have operators with the same name and in the same class at the same time.
@ We can define operators in the text of a program with directives, for example:

- op(500, xfx, --). - op(450, fx, @)-

sum_tree(@V, V). -2

@ The twofold role of the ,,comma”

@ separates the arguments of the structure-term
@ works as an operator of priority 1000, type xfy, e.g. in clause bodies:
(p - a,b,c) = :-(p,”.7(a,”,”(b,c)))
@ the ,,naked” comma (,) is not allowed as a name constant, but as an operator it can be used.

@ In a structure-argument the term with a priority higher than 999 should be placed in brackets:
| ?- write_canonical((a,b,c)). = ’,’(a,”,”(b,c))
| ?- write_canonical(a,b,c). = ! procedure write_canonical/3 does not exist

@ For the unambiguous analysis, the Prolog standard stipulates, that

@ an operator as an operand has to be placed in brackets, for example: Comp = (=)
@ infix and postfix operator with the same name cannot exist.

@ These restrictions are not compulsory in many Prolog systems.
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Arithmetic in Prolog

@ Operators make it possible to write arithmetic expression in the usual way as we do in
mathematics or in other programming languages.

@ The is built-in predicate expects an arithmetic expression on its right side (2. argument),
evaluates it, and unifies the result with the argument on the left side.

@ The =:= built-in predicate expects an arithmetic expression on both sides, evaluates them, and
fails if the values are not equal.

@ Examples:
| ?2- X = 1+2, write(X), write(” ), write_canonical(X), Y is X.
= 1+2 +(1,2) = X =1+2, Y =3 ? ; no
| 2- X =4, Y is X/2, Y =:= 2. = X =4,Y=2.07?; no
| 2- X =4, Y is X/2, Y = 2. = no

@ Important: the terms composed of arithmetical operators (+,-,...) are compound Prolog
terms. Only the built-in arithmetic predicates evaluate these!

@ The Prolog terms are basically symbolic, the arithmetic evaluation is the ,,exception”.
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Classical symbolic expression processing: differentiation
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@ Let’s write a Prolog predicate which calculates the derivate of a term made up of numbers and

the x name constant.

% deriv(Expr, D): D derivate of Expr according to the x
deriv(x, 1).

deriv(C, 0) :- number(C).

deriv(U+V, DU+DV) :- deriv(U, DU), deriv(V,
deriv(U-V, DU-DV) :- deriv(U, DU), deriv(V,
deriv(U*V, DU*V + U*DV) :- deriv(U, DU), deriv(V,

| ?- deriv(x*x+x, D).
= D = 1*X+x*1+1 ? ; no

| ?- deriv((x+1)*(x+1), D).
= D = (A+0)*(x+1)+(x+1)*(1+0) ? ; no

| ?- deriv(l, 1*x+x*1+1).
= | = xX*X+x ? ; no

| ?- deriv(l, 0).
= no

DV).
DV).
DV).
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Example with operators: substitution value of a polynomial

@ Polynomial: a Prolog term built from numbers and the ‘x’ name constant, using the ‘+” and “*’

operators.

@ The task: calculate the value of a polynomial for a given x value.

% value_of(Expr, X, E): E is the value of the polynomial Expr,

% with the substitution x=X
value_of(x, X, E) :-
E = X.
value_of(Expr, _, E) :-
number(Expr), E = Expr.
value_of(K1+K2, X, E) :-
value_of(K1, X, E1),
value_of(K2, X, E2),
E is E1+E2.
value_of(K1*K2, X, E) :-
value_of(K1, X, E1),
value_of(K2, X, E2),
E is E1*E2.

| ?- value_of((X+1)*x+x+2*(x+x+3), 2, E).
E=227
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Declarative Semantics —the Logic Form of Clauses

@ The notion of general clause as introduced in mathematical logic:
Fl, N 7Fnl—T1, e ,T;n~ VY(Fl V...V F,, V _'T1 V...V _‘/Tm)

@ Definite clause or Horn clause: a clause whose head contains at most one element (n < 1).

@ Classification of Horn clauses

@ Ifn =1,m > 0, then the clause is called a rule, eg.
grandparent(U,G):-parent(U,P),parent(P,G).

logic form:  VUNSz(grandparent(U,G) «

parent(U, P) A parent(P,G))

equivalent form: VUN (grandparent(U, G) « 3Sz(parent(U, P) A parent(P,G)))

@ in case of n = 1, m = 0 the clause is a fact, eg.
parent(’Imre”, “Istvan”).
its logic form is invariable.

@ In case of n = 0, m > 0 the clause is a query, eg.
- grandparent(’Imre”, X).

logic form: vxX—-grandparent(” Imre”, X), namely -3Xgrandparent(” Imre”, X)
@ Ifn =0,m = 0, then it is an empty clause, denoted by: O. Logically this is an empty

disjunction, which is equivalent to false.
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The Role of Functionsin Prolog

@ The role of function symbols
@ The Prolog is based on so called equality-free logic, so we can not state that two terms (of
first order logic) are equal.
@ This is the reason that the function symbols can be only be used as constructor-functions:
f@, . z) =26 (= fy,. . u) AT =Y)Ao A (T = Yn))
@ Example leaf(X) = Z< Z = leaf(Y) A X = Y, namely leaf(X) is a new entity, different
from any other entities.
@ Example:

sum_tree(leaf(Value), Value).
sum_tree(node(Left,Right), S) :-
sum_tree(Left, S1), sum_tree(Right, S2), S is S1+S2.

| ?- sum_tree(node(leaf(l),leaf(2)), Sum). = Sum = 3 ?
| ?- sum_tree(Tree, 3). = Tree =leaf(3) ?

@ The term node(leaf(1), leaf(2)) in the query is taken apart by the procedure.
@ Pattern matching (unification) is bidirectional: it is able to both construct and disassemble.
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Declarative Semantics

@ Why is declarative semantics a good thing?

@ The program is decomposable: It is possible to assign a meaning to single predicates (even
to single clauses) separately.
@ The program is verifiable: in view of the intended meanings of predicates it can be checked
if the clauses describe true statements.
@ Itis very important to formulate the intended meaning of a predicate in the head comment.
This is a declarative sentence which describes the relation between the arguments. Examples:
@ Head comments: % parent(C,P): C has parent P.
% grandparent(C,GP): C has grandparent GP.
grandparent(C, G) :- parent(C, P), parent(P, G).
The meaning of the clause: If C has parent P ans P has parent G, then C has grandparent G.
This is in accordance with our expectations and it is acceptable as a true statement.
@ Head comments: % sum_tree(T, Sum): Tree T has leaf sum Sum

% E is Exp: Arithm. expr.  Exp hasvalue E. (is isinfix!)

sum_tree(node(L,R), S) :- sum_tree(L, S1), sum tree(R, S2), S is S1+S2.
The meaning: If tree L has leaf sum s1 and tree R has leaf sum s2, and arith. expression
S1+S2 has value S, then tree node(L,R) has leaf sum s. This is again a true statement.
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Declarative Semantics of Prolog

@ Declarative Semantics

@ An auxiliary concept: an instance of a term/statement: a term/statement obtained by
substituting certain variables in it.

@ The execution of a query is successful, if an instance of the body of the query is logical
consequence of the program (i.e. the conjunction of the clauses in the program).

@ The result of the execution is the substitution which produces the instance.

@ A query may execute successfully in multiple ways.

@ The execution of a query fails if none of its instances is a consequence of the program.

@ Example: parent(”Inre”, “Istvan”). L)
parent(Imre”, *Gizella”). (p2)
parent(”Istvan®, *Géza’). ®3)
parent(” Istvan, “Sarolt”). 4
parent(Gizella”, *Civakod6 Henrik?). 5
parent(*Gizella”, ’Burgundi Gizella’). (P6)

grandparent(Gy, N) :- parent(Gy, Sz), parent(Sz, N). (gp)
:- grandparent(’Imre”, N). (goal)
@ from (p1) + (p3) + (gp) follows that grandparent(” Imre”, *Géza”), so (goal)
executes successfully using the N = >Géza” substitution.
@ Another example of a successful execution: (p1)+(p4)+(gp) N = *Sarolt’.
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Declarative Semantics (contd.)

@ Why is declarative semantics insufficient?

@ The declarative semantics is based on general deduction.

@ There are several ways to do deduction, so this process needs search.

@ In case of an infinite search space the deduction enginge may fall into an infinite loop.

@ In case of finite search space the search may have very poor efficiency.

@ Some built-in predicates are able to work only under certain conditions. For instance: S is
S1+s2 signals error, if S1 or S2 is unknown. Because of this
sum_tree(node(L,R), S) :- S is S1+S2, sum_tree(L, S1), sum_tree(R, S2).
is logically correct, but leads to an error.

@ Because of these, it is very important, that the Prolog programmer has to know the correct
execution mechanism of Prolog, namely the procedural semantics of the language.

@ Motto: Think declaratively and check procedurally!
So: after You have written your declarative program, think it over if the procedural execution is
correct (does not fall in infinite loop, is efficient, the built-in predicates are able to work, etc.)
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Procedural Semantics of Prolog

@ The execution mechanism of Prolog can be described in several ways:

@ The SLD resolution theorem proving method (very briefly see below)
@ Theorem proving approach based on goal-reduction (see next slides)
@ Backtrackabke procedures using pattern matching based call mechanism (details see later).

@ The resolution theorem proving method used in Prolog :

@ SLD resolution: Linear resolution with a Selection function for Definite clauses.

@ The query negates the existence of the object looked for, eg. * Imre~ has no grandparents:
:- grandparents(’Imre”, G). = —3G grandparents(”Imre”,G)

@ We get a new query as the so called resolvent of the query and a program clause.

@ Such resolution steps are repeated until an empty clause is reached (backtracking at
dead-ends).

@ By this we prove indirectly that the body of the query is a consequence of the program:
false” (O) is shown to follow from the negation of the body and the program.

@ This proof is constructive, ie.” the variables of the query are instantiated — this the answer
looked for eg. G = *Géza”).

@ Further answers can be produced by other proofs.
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The reduction step

@ The clauses used in the example and the query:

parent(’Imre”, lIstvan’). (D
parent(’ Istvan’, *Géza’). (3
grandparent(C, G) :- parent(C, P), parent(P, G). (gap)

:- grandparent(’Imre”, G), write(G).
@ Reduction step: a query + a related clause = new query.

@ The reduction step is tried for all clauses of the predicate (one by one):

@ The first query goal is made the same as the clause head by variable substitution.

@ Both the clause and the query are specialised using this substitution. For (gp) this is:
grandparent(’Imre’, G) :- parent(’Imre”, P), parent(P, G). (gp*)

@ The first goal is replaced by the body of the clause, ie. the goal is replaced by its
pre-condition. The new query in the example: parent(” Imre”, P), parent(P, G),
write(G).

@ Next, we reduce the goal using clause (p1), specializing the query by P = ~Istvan’:
parent(’Istvan’, G), write(G).
Because we reduced the query using a fact (with an empty body), its length decreases.

@ Next a similar step can be made using (p3), resulting in the final query: write(”Géza).
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Prolog as a Goal-Reduction Theorem Prover

@ The main idea: The goal to be solved is reduced to subgoals from which it follows.

@ Example program:

parent(’Imre”, “lIstvan’). (pl)
parent(’Imre”, Gizella’). ((P2)
parent(’Istvan’, *Géza’). --2) (p3)

grandparent(C, G) :- parent(C, P), parent(P, G). (gp)

@ the initial query: :- grandparent(’Imre”, G).
(Now a query is considered as a statement to be proved.)

@ \We extend the query with one or more special goals to preserve the values of the variables:
:- grandparent(’Imre’, G), write(G).

@ The query is reduced (see next slide) repeatedly, until only write goals remain:

[red. with (gp) clause] - parent(’Imre”, P), parent(P, G), write(GP).
[red. with (pl) clause] - parent(’lIstvan’, G), write(G).
[red. with (p3) clause] - write(CGéza’).

@ We can read out the result of the run from the argument of write.
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Reduction step —further details

@ Handling of variables

@ The scope of a variable is a single clause (cf. VX ... X;(F < T)).
@ Before the reduction step the clause has to be copied, systematically replacing all variables
by new ones (cf. recursion).
@ Unification: Two terms/statements are made the same, by variable substitution.
@ The variables can be substituted by arbitrary terms, including other variables.
@ The unification produces the most general common form eg.
sum_tree(leaf(X), X) has common form sum_tree(leaf(x), X) and not eg.
sum_tree(T, V) sum_tree(leaf(0), 0)

@ The result of the unification is the substitution, which results in the most general common
form. This is unique, except for variable renaming. In the example: T=1eaf(X), V=X.

@ Examples:
Cal | : Head: Substi tution:
grandparent(’Imre”, G) grandparent(C, GP) C ="Imre”, GP = G
parent(’Imre”, Sz) parent(’Imre”, *Istvan’) Sz="Istvan’
parent(’Imre”, Sz) parent(’Istvan’, ’Géza’) not unifiable
love(” Istvan’, Who) love(X, X) X = ”Istvan”, Who = *lIstvan”
love(Whol, Who) love(X, X) X = Ki, Who = Whol
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Choice points, Backtracking

@ We were ,,lucky” in the example, the sequence of the reduction steps led to a solution

@ |n general case we can get into a dead-end (into a non-reducible query), eg.
:- grandparent(’Imre”, *Civakod6 Henrik?). (gp)
- parent(’Imre”, Sz), parent(Sz, “Civakodd Henrik?). (pl): parent(’Imre”, “Istvan’)
- parent(’Istvan’, “Civakod6 Henrik”). ??7?

@ The 2nd query was reduced with clause (p1), but to get to the solution we need (p2):
parent(~Imre”, “Gizella”) — Not only the the first clause has to be tried but all clauses!

@ If a query is reduced with the non-last clause then a choice point is created, in which we store
the query and the number of the clause used for the reduction.

@ In case of a dead-end or further solution request: we go back to the choice point visited last
(the youngest) and then continue the search among the remaining clauses (untried ones).

@ [f no new clause can be found at a choice point, then we backtrack further. If there are no more
choice points the run of the query fails.

@ |n the above example: we backtrack to the step 2 and there we try the second (p2) clause:
(--.) - parent(C’Imre”, P), parent(P, *Civakod6 Henrik?).

(pls :- parent(°Gizella’, “Civakodé Henrik?).
®5) o
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The trace of the search space
@ This is an (edited) dialog with the reduction trace program. We eliminated some failing
unifications.
Il ?- grandparent(’Imre”, ’Civakodd Henrik?).
GO: grandparent(’Imre”,”Civakodé Henrik”) ? <--- continues when RET is pressed
Trying clause 1 of grandparent/2 ... successful
| () {Child_1 = ”Imre”, GrandParent_1 = *Civakodd Henrik’}<--- variabl e renaning
G1: parent(’Imre” ,Parent_1), parent(Parent_1,Civakodé Henrik”) ?
] Trying clause 1 of parent/2 ... successful
] (1) {Parent_1 = ’Istvan’}
|
J-—-- G2: parent(” Istvan”,’Civakod6 Henrik®) ?
C-- <--- &B-G8 6 unsuccessful clause matches
] |<<<< Failing back to goal G1 <--- Does 'lnre’ has other parents?
] Trying clause 2 of parent/2 ... successful
| (2) {Parent_1 = *Gizella’}
|
|-—-- G9: parent(°Gizella”,’Civakoddé Henrik”) ?
| 1 Trying clause 5 of parent/2 ... successful
| I &3
] |-——- Gl4: [1 ? <--- enpty clause, success
] 1 | ++++ Solution: ?
] |<<<< Failing back to goal G1 <--- see previous slide, bottomdashed Iine
|
|<<<< No more choices <--- see previous slide, top dashed line
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Visualisation of Backtracking with a Search Tree

p(CImre”, Istvan’). gp(*inre”, “CH)
pCImre’, “Gizella”).
p(’Istvan®, *Géza’).
p(’Istvan”, “Sarolt”).
p(CGizella®, CH”).
p(CGizella®, *BG”).

(p1)
(P2)
&
p:
05 (9p)
% (P6)

EEXRXSN

gp(Gy, N) :- "1 >, P), p(P, "CH™).
PGy, $2), p(Sz, N). % (gp) pCimre”, Py, p(P, "CHD)
(p1) (P2) "o N

@ The search tree P="Istvan’ P="Gizella” '

@ the nodes are execution states

@ labels appearing on p(’Istvan”,”CH) p(Gizella”, CH")
@ nodes are queries, Q (P5)
@ edges are clause numbers and substitutions. P

'

A

@ The Prolog search: traversal of the search tree

@ from left to right,
@ depth-first search.

@ The dashed line denotes unsuccessful clause searches,
so called first argument indexing eliminates the top one.
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Search Tree —Another Example

pClImre”, “Istvan’). % (1) gp(Gy, N) :-
pCImre”, *Gizella’). % (2) gp(Gy, Sz), sz(Sz, N).
p(CIstvan’, *Géza’). % (3)
“Istvan”, °S 1t7).% (4 , ,
p(C’ Istvan aro ) (G)) .gp( Imre’, GP)

p(’Gizella”, *CH?). % (5)
p(Gizella’, *BG*). % (6)

o PCImre”, P), p(P, GP)

1) 2
P =Istvan’ P ="Gizella’
® p(’Istvan’, GP) ® p(’Gizella’, GP)
@) (4) (5) (6)
GP =Géza’ GP = "Sarolt’ GP=/CH’ \GP='BG’

L] L] L] L]
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Search Tree —yet Another Example

pClImre”, “Istvan’). % (1) agp(Gy, N) :-
pCCImre”, “Gizella®). % (2) PGy, P), p(P, N).
p(C’Istvan’, “Géza’). % (3)

p(CIstvan’, “Sarolt’).% (4) ’ ’

p(’Gizella”, *CH*). % (5) ng(u’ BG’)

p(C’Gizella’, ’BG”). % (6)

+P(U,P), p(P, 'BG")

()

2 - (6)

U ="lmre’ U ="Imre’
P ="lIstvan’ P ="Gizella’
p(lstvan’, 'BG”) ® n(’Gizella’, 'BG’) A )
Y ‘(7)
[
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Procedural models of Prolog execution

@ A procedure is a set of clauses with the same functor
@ A procedure is called via pattern matching (unification) of the call and a clause head.
@ Models of Prolog execution:

@ Procedure-reduction model
@ Essentially this is the same as the goal-reduction model.
@ The base step: the reduction of a sequence of calls (i.e. a query) using a clause (this is the
already known reduction step).
@ Backtrack: going back to an earlier query and trying it with another clause.
@ Advantages of the model: can be defined exactly, the search space is explicit.
@ Procedure-box model
@ Main idea: execution consists of passing through “ports” of nested procedure boxes.
@ Basic ports of a procedure box: entry, (successful) exit, failure.
@ Backtrack: asks for a new solution from an already exited procedure (“redo” port).

@ Advantages of the model: it is similar to the traditional recursive procedure model, the
built-in Prolog tracing mechanism is based on this.
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The Procedure-reduction Execution Model

@ The main idea of the reduction execution model

@ A state of the execution: a query
@ The execution consists of two kinds of steps:
@ reduction step: a query + a clause — a new query
@ backtrack (in case of dead-end): back to the last choice point
@ Choice point:
@ creation: at a reduction step which uses a non-last clause
@ activation: at backtracking, return to the query of the choice point and try further clauses
for matching.
(therefore the choice point has to store the serial number of the clause used matched, in
addition to the query)
@ the number of the choice points can be reduced by so called indexing

@ The reduction model can be represented with a search tree

@ During the execution the nodes of the tree are traversed using depth-first search
@ The prolog execution engine has to store the choice points on the path from the root to the
current node of the search tree—this the choice point stack.
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The base element of the reduction model: reduction step The Execution Algorithm of Prolog
@ Reduction step: reduce a query to another query 1. (Initialization:) The stack isempty, QU := query
@ reduction with a program clause (if the first goal calls a user-defined procedure): 2. (Built-in procedure:) If thefi rst call of QU is built-in then execute it,
@ The clause is copied, every variable systematically changed to a new variable. a Ifitfails= step 6.
@ The query is split into the first call and a residual query. b. If it is succeeds, QU := the result of reduction step = step 5.
@ The first call is unified with the clause head. 3. (Initial value for the clause counter ) 1 = 1.
@ The necessary substitutions are performed on the body of the clause and on the residual 4. (Reduction step:) Let us consider the list of clauses applicable to the fi rst call of QU. If there is no indexing, then
of the query thislist will contain all clauses of the predicate, with indexing this will be afi Itered subsequence. Assume the list
@ The new query: clause body prepended to the residual query hasN elements.
@ |f the call and head of the clause cannot be unified then the reduction step fails. alfl > N= step6.
@ reduction of a built-in call (the first goal calls a built-in procedure) b. Reduction step between the Ith clause of the list and QU query.
c. If thisfails,then 1 = 1+1 = step 4.

@ The query is split into the first call and a residual query.

@ The built-in procedure call is executed

@ This can be successful (and may substitute variables) or it can fail.

@ |n case of success the substitutions are performed on the residual query.

d. If I < N (non-last clause), then push <QU, 1> on the stack.
e. QU :=theresult of reduction step

5. (Success:) If QU is empty, then execution ends with success, otherwise = step 2.

@ The new query: the residual query 6. (Failure:) If the stack is empty, then execution ends with failure.
@ If the call of the built-in procedure fails then then the reduction step fails. 7. (Backtrack:) If the stack is not empty, then pop <QU, I> fromthe stack, I == 1+1, and = step 4.
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Indexing (preview) Reduction model —advantages and disadvantages
@ What is indexing? @ Advantages
@ Fast selection of the clauses applicable to a call (clauses potentially matching the call), @ (relatively) simple and (relatively) precise definition

@ involving a compile time classification of the clauses of the procedure @ the search space is explicit, and graphically describable

@ Most of the Prolog systems, including SICStus Prolog, do first argument indexing. @ Disadvantages

@ The indexing is based on the outermost functor of the head argument. @ It hides the exit from a predicate, pl

@ in case of a number or a name constant C: the functor is c/0; pi-gq, r. GO0:

p?
- . . - s, t. G1: B ?
@ in case of structure R with N arguments: the functor is R/N; 2 ° G2: 2 { r?
@ in case of variable the functor is not defined (the clause is associated with all functors). : gif ﬁ’,,r ? « exit fromg
G5: [1°?

@ Implementation of indexing:
@ it does not reflect the real execution mechanism of Prolog implementations

@ it cannot be used to trace a ,,real” Prolog program (long queries)

@ At compile time: for each functor the list of the applicable clauses is built
@ At runtime: the appropriate clause list is obtained in practically constant time.

@ Important: if the list has a single element, no choice point is created! @ That is why another model is needed :

@ Example: the parent(” Istvan®, X) call selects a two element clause list, but for szuloje(X, @ Procedure box model
*Istvan”) all 6 clauses are kept in the list (because the SICStus Prolog indexes only on the first @ (it is also called the 4-port-box or Byrd box model)
argument)

@ the built in trace function of most Prolog systems is based on this model

Deklarativ programozés. BME VIK, 2005. tavaszi félév (Logikai Programozas) Deklarativ programozés. BME VIK, 2005. tavaszi félév (Logikai Programozas)



LP-81 LP-82

Procedure-Box model Procedure-Box model —graphical representation

@ The two phases of the Prolog procedure-execution

@ forward execution: nested procedure entries an exits q(@)- q@). q()- p(xX) - q(X), X > 3.
@ backward execution: requesting a new solution from an exited procedure
@ A simple example: p(X)
a@- a@. a®. pCxX) - a(X), X > 3.
0 Enter the p/1 pred?cate (Call port) q(%) x> 3
@ Enter the g/1 predicate (Call) call ————wf -~ IR ————— coemeee Exi t
@ The g/1 predicate exits successfully with the q(2) result (Exit port) X'2/ ! \
@ The > /2 built-in predicate is entered with a 2>3 call (Call) [ b L o !
@ The > /2 predicate fails (Fail port) e J
@ (backward execution): backtrack into the (already exited) q/1, asking for a new solution Fai | [ = ~ R i o — o
(Redo Port)
@ The g/1 predicate exits with the sttq(4) result (Exit)
@ Predicate > /2 is entered with a 4>3 call and exits successfully (Call, Exit)
@ The prs1 predicate exits successfully with the p(4) result (Exit)
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Procedure-Box model —the trace of a simple example Procedure-Box: A more complex example
@ The previous example tracking in SICStus Prolog PCX,Y) == a(X,2), p(Z,Y)- p(X,Y) == q(X.Y).
q(2- q®)- a(.- q(1,2)- q(2,3). q(2,4)-
PG - aX), X > 3.
| ?- trace, p(X)- P(X V)
1 1 : p( 463) ?
2 2 q(_463) ?
? 2 2 q(2) ? % ? = non-deterninistic exit
3 2 2>3 ? call [ B Exit
3 2 2>3 ? ! !
2 2 2 q(@ ? % backwar d execution 7 ax 2) }{ Y p(z.Y) A\
? 2 2 :qd) ? i et i e
4 2 4>3 ?
4 2 4>3 ?
? 1 1 Exit: p(4) ? X = 4 2 ;
1 1 :pd) ? % backwar d execution [T T
2 2 :q@) ? % backwar d execution “]q(x'y) A
g g : gg’)?o Fai | B ST T Redo
5 2 7>3 ?
1 1 p(?) ?
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Procedure-Box model —principles of connection
@ How is the box of a "parent" predicate built from boxes of predicates called in it?
@ \We can assume that all clause heads contain distinct variables, as the head unifications can be
transformed to calls of the = /2 built-in predicate.
@ Forward execution:
@ The Call port of the parent is connected to the call port of the first call of the first clause.
@ The Exit port of a predicate call is connected to
@ the Call port of the following call,
@ the Exit port of the parent if there are no following calls
@ Backward Execution:
@ The Fail port of a predicate call is connected to
@ the Redo port of the preceding call, or
@ to the Call port of the first call of the following clause if there are no preceding calls
@ to the Fail port of the parent if there are no following clauses
@ The Redo port of the parent is connected to the Redo port of the last call of each clause
@ always go back to the clause from which the control exited previously
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Box of OO approach: p/ 2 C++ code of method of "next solution”
bool ean p:: next ()
{ switch(clno) {
case 0: Il entry point for the Call port
clno = 1; /1 enter clause 1: p(XY) :- a(X, 2), p(ZY).
qaptr = new q(x, &z); /1l create a new instance of subgoal q(X 2)
redoll:
if(!qgaptr->next()) { Il if q(X 2) fails
del ete qaptr; /1 destroy it,
goto cl 2; /1 and continue with clause 2 of p/2
}
pptr = new p(z, py); /1 otherwise, create a new instance of subgoal p(Z Y)
case 1: Il (enter here for Redo port if clno==1)
/* redol2: */
if(!pptr->next()) { Il if p(z,Y) fails
del ete pptr; Il destroy it,
goto redoll; /1 and continue at redo port of q(X, 2)
}
return TRUE; I/ otherwise, exit via the Exit port
cl2:
clno = 2; /1 enter clause 2: p(X,Y) :- a(X V).
gbptr = new q(x, py); Il create a new instance of subgoal q(X Y)
case 2: Il (enter here for Redo port if clno==1)
/1* redo21: */
if(!qgbptr->next()) { I if ag(XY) fails
del ete gbptr; /1 destroy it,
return FALSE; /1 and exit via the Fail port
}
return TRUE; /1 otherwi se, exit via the Exit port
1}
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Procedure-Box Model —Object Oriented View

@ Each predicate is transformed to a class which has a constructor function (to get the call
parameters) and has a method to give the “(next) solution”.

@ The class registers the number of the clause in which the control is.

@ At the first call of the method we pass the control to the first Call port of the first clause.

@ When we arrive at a Call port of a body goal an instance is created of the predicate called, then
@ the "next solution” method is called of this predicate instance (*)

@ [f this call returns with success then the control jumps to Call port of the next call or to the
Exit port of the parent

@ If this call fails then the predicate instance is destroyed and we jump to Redo port of the
previous call, or to the beginning of the following clause, etc.

@ When we arrive at the Redo port then we continue at step (*)

@ The Redo port of the parent (which corresponds to the non first call of the “next solution”
method) gives the control to the last Redo port of the clause whose clause number is stored in
the instance.
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Backtracking —an arithmetic example

@ Example: search of "good” number

@ The task: Find a two digit number whose square has three digits and the first two digits of the
square are the same as those of the original number, but in reverse order.

@ The program:

% decl(J): J is a positive decimal digit.
decl(1l). decl(2). decl(3). decl(4). decl(5). decl(6). decl(7)-
decl(8). decl(9).

% dec(J): J is a decimal digit.
dec(0). dec(d) :- decl(J)-

% Square of Num is a 3 digit number and begins with Num reversed.
good_number(Num) : -

decl(A), dec(B),

Num is A * 10 + B, Num * Num // 10 =:= B * 10 + A.
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Prolog Execution —the 4-port procedure box model

good_number(Num) : -

decl1(A), dec(B),
Num is A * 10 + B, Num * Num // 10 =:= B * 10 + A.

good_number

decl(A) dec(B) Num is .
cal _ _ A*10+B NurNum//10 | true || EXit
A=l B=0 =:= B*10+A I
2 1 ‘
; 5 false
Fail Redo
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The SICStus Procedure-Box Model Debugger —the Most Important Commands

@ Baisc tracing commands

@ h <RET> (help) — displays the list of commands

c <RET> (creep) or <RET> — continue tracing, stopping at every port

I <ReT> (leap) — just stop at breakpoints, but keep building boxes at all ports
<RET> (zip) — just stop at breakpoints, do not build boxes

<RET> resp. - <RET>— put/remove a spypoint on the current predicate
<RET> (skip) — skips the body of the predicate (Call/Redo = Exit/Fail)
<RET> (out) — exits from the body of the predicate

LS SISO S ¥

o uw + N

-

@ The commands which influence the Prolog execution

@ u <RET> (unify) — unifies the current goal with a user-supplied term, instead of execution.
@ r <RET> (retry) — retries the execution of the current call (jumps to the Call port)

@ Other commands

@ w <RET> (write) — writes out the call without observing the depth-limit
@ b <RET> (break) — enters a new, embedded Prolog interaction level

@ n <RET> (notrace) — switches off tracing

@ a <RET> (abort) — aborts the current run
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Backtracking Search —Enumeration of an Interval

@ dec(J) enumerated the integers between 0 and 9

@ Generalization: let’s enumerate the integers between N and M (N and M are integers)

% between(M, N, 1): M =<1 =< N, I integer.
between(M, N, M) :-

M =< N.
between(M, N, I) :-

M <N,

M1 is M+1,

between(M1, N, 1).

% dec(X): X is a decimal digit
dec(X) :- between(0, 9, X).

?- between(1, 2, _X), between(3, 4, _Y), Z is 10*_X+_Y.

|

Z =13 7 ;
Z =14 7 ;
Z =237 ;
Z =247 ;
no
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Digjunction, example: the ,ancestor” predicate

@ The ,,ancestor” relation is the transitive closure of the ,,parent” relation: a parent is an ancestor
(1), and an ancestor of an ancestor is also an ancestor (2), thus:

% ancestorO(E, Anc): Anc is ancestor of E.
ancestorO(E, P) :- parent(E, P). % (1)
ancestorO(E, Anc) :- ancestorO(E, AncO), ancestorO(Anc0O, Anc). % (2)

@ The definition of ancestoro0 is mathematically correct, but gives an infinite search space:
parent(child,father). parent(child,mother). parent(mother,grandfather).
| ?- ancestorO(child, Anc).
Anc = father ? ; Anc = mother ? ; {later:} ! Error: insufficient memory
@ The cause of the infinite recursion is that the goal :- ancestoro(father, X). fails at clause
(1), and (2) leads to a :- ancestorO(father, Y), ancestorO(Y, X).goalandsoon...
@ | et us eliminate the left recursion:

ancestorl(E, P) :- parent(E, P). % (3)
ancestorl(E, Anc) :- parent(E, P), ancestorl(P, Anc). % (4)

| ?- ancestorl(child, Anc).
Anc = father ? ; Anc = mother ? ; Anc = grandfather ? ; no

@ This executes all parent(X,Y) subgoals twice: in (3) and in (4).
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The digiunction as a syntactical sweetener

@ The disjunction can have multiple branches. The “;” operator binds less tightly than *,” therefore
the disjunction is parenthesised, while its branches don’t have to be bracketed. Example:

a(X, Y, 2) -
pCX, V), qC¥, V),
C rU, D, s@, 2
;. 2)
t, 2)

D,
u(X, 2).
@ The disjunction can always be eliminated with auxiliary-predicates.

@ We look for the variables which can be found both in the disjunction and outside it, as well
@ The auxiliary-predicate will contain these variables as arguments
@ Each clause of the auxiliary-predicate corresponds to a branch of the disjunction
auxiliary(U, V, 2) :- r(U, T), s(T, 2).
auxiliary(U, Vv, 2) :- t(V, 2).
auxiliary(U, Vv, 2) :- t(U, 2).
a(X, Y, 2) -
p(X, U, q¥, V),

auxiliary(U, V, 2),
u(X, 2).

@ The semantics of the disjunction can be defined with this auxiliary-predicate conversion.
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Thedisjunction

@ The ancestor1 predicate can be made more efficient by merging its clauses:

ancestor2(E, Anc) :- parent(E, P), itself_or_ancestor(P, Anc).
itself_or_ancestor(E, E). @)
itself_or_ancestor(E, Anc) :- ancestor2(E, Anc).

@ The itself_or_ancestor predicate can be eliminated with the introduction of a disjunction:

ancestor3(E, Anc) :-
parent(E, P),

( Anc =P
; ancestor3(P, Anc)
).

@ SICStus Prolog implements the above disjunction by building an auxiliary-predicate equivalent
to itself_or_ancestor and transforms ancestor3 to ancestor2

@ (Recall:) The x=Y in-built predicate unifies its two arguments.

@ The x=Y procedure could be defined using the fact: U = U. ==(U, V), cf. (D).
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Disjunctions —comments

@ Are the clauses in “AND’ or ‘OR’ relation?

@ Tne clauses of the database are in AND relation, e.g.
parent(’Imre”, “lIstvan’). parent(’Imre”, ’Gizella”).
means: Imre has parent Istvan AND Imre has parent Gizella.

@ The clauses in AND relationship lead to disjuctive answers (which are in OR relation):
- parent(’Imre’ Sz). = Sz = “lIstvan” ? ; Sz = *Gizella” ? ; no
The answer to the question ,,Who is a parent of Imre” is: Istvan OR Gizella.

@ The above predicate with two clauses can be converted to a single clause using a disjunction:
parent(’Imre”, P) :-
P = “lIstvan’ (&)
H P = “Gizella’ (@)
).
Thus the conjunction has been changed to a disjunction De Morgan identities.
@ In general: all predicates can be converted to have one clause only:

@ The clauses are transformed to have identical heads usingnew variables and equalities:

parent(’Imre”, P) :- P = “lIstvan’.
parent(’Imre”, P) :- P = “Gizella’.

@ The bodies are collected into a disjunction, which forms the body of the new predicate ((*)).
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on

@ Task: Let us find (in the database) a parent who is not a grandparent!

@ For

this we need negation:

@ Negation by failure: the \+ cal I structure runs the call and succeeds if and only if the
Call fails.

@ A solution to the above task:

?

XX —

- parent(_, X), \+ grandparent(_, X).
ZIstvan® ? ;
“Gizella” ? ;

@ An equivalent solution:

?

XX —

no

- parent(_Gy, X), \+ parent(_, _Gy).
Istvan’ ? ;
Gizella” ? ;

@ What happens if the two calls are switched?

| 2
no

- \+ parent(_, _Gy), parent(_Gy, X).
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Example: determining the co-effi cient in alinear expression

@ Formula: a number, the ‘x” name constant or structures built from these via the ‘+” and “*’

ope
@y

rators.

- type term == {x} \/ number \/ {term+term} \/ {term*term}.

@ Linear formula: a number appears at least on one side of the “*” operator.

% c

oeff(Term, E): The coefficient of x is E in the Term linear formula.

coeff(x, 1). coeff(T1*T2, E) :-

coeff(Term, E) :- number(T1),
number(Term), E = 0. coeff (T2, EO),

coeff(T1+T2, E) :- E is T1*EO.
coeff(T1, E1), coeffF(T1*T2, E) :-
coeff (T2, E2), number(T2),
E is E1+E2. coeff(T1, EO),

E is T2*EO.

| ?- coefF(((x+1)*3)+x+2*(x+x+3), E). | ?- coeff(2*3+x, E).

E=87; E=17?;

no E=17?3; no
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@ The \+ call is a built-in meta-predicate (cf. I/ — unprovable)

@ executes the call call,
@ if call completes successfully, then fails
@ else (ie. if call fails) succeeds.

@ During the execution of \+ call at most one solution of call is obtained.
@ \+ call never binds variables.

@ Problems with the Negation by Failure:

@ | closed world assumption” (CWA) — anything that is unprovable is considered false.

| ?- \+ parentCImre’, X).
| ?- \+ parent(*Géza’, X).

----> no

---=> true ?

@ \ + H declarative semantics: =3.X (H), where X denotes the variables in H that are
unbound at the moment of call.

| - \+ X =1, X
| 7- X =2, \+ X

2. ----> no
1. -——> X =27
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@ with the use of negation:

-2
coeff(K1*K2, E) :-

number(K1), coeff(K2, EO), E is K1*EO.
coeff(K1*K2, E) :-

\+ number(K1),

number(K2), coeff(K1, EO), E is K2*EO.

@ with the more efficient conditional construct:

-9
coeff(K1*K2, E) :-
[¢ number (K1) -> coeff(K2, EO), E is K1*EO
H number(K2), coeff(K1, EO), E is K2*EO

).
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Conditional constructs

@ Syntax (condition, then, else are arbitrary goals):

- -
...,
( condition -> then
; else
).
.-

@ Declarative semantics: the above form is equivalent to the following one, if the condition is a
simple condition (cannot be solved in multiple ways):

( condition, then
H \+ condition, else
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Conditional constructs —examples

@ Factorial:

% fact(+N, ?F): NI = F.
fact(N, F) :-

=1 %N=0, F=1
, N1 is N-1, fact(N1, F1), F is N*F1

@ The above conditional has the same meaning as the disjuntion obtained by replacing -> by
comma (see comment), but it is more efficient, as it does’t leave a choicepoint.

@ Sign of number:

% Sign = sign(Num)
sign(Num, Sign) :-
( Num > 0 -> Sign
H Num < 0 -> Sign
H Sign = 0
).

1
|
[uy
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Conditional constructs (continued)

@ Procedural semantics
A (condition->then;else),continuation goal run is:

@ The condition call is executed.

@ If condition succeeds, then the then, continuation subgoal remains, with the
substitutions resulting from the first solution of the condition. The other solutions of the
condition subgoal are ignored.

@ If condition fails, then the else, continuation subgoal remains without any substitution.

@ Multiple branching with nested conditional constructs:

( condl -> thenl ( condl -> thenl
M cond2 -> then2 ;  (cond2 -> then2

) )]
@ The else part can be omitted, the default is: fail.

@ The\ + cond negation can be replaced with the ( cond -> fail
construct.

; true ) conditional
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The Prolog Term: the Data Structure of Prolog

@ Simple data objects:

@ Constants
@ Integers (infinity size in practice)
@ Floating point numbers
@ name constants (max 65535 characters in SICStus Prolog)
@ Variables
@ compound data objects:

@ structures: (structure name )( (argy ), ..., {arg,))

@ (structure name) is an arbitrary name constant

@ (arg; ) is an arbitrary term

@ The number of the arguments of a structure is also called its arity.
@ The arity of structures is between 1 and 255 in SICStus Prolog

@ The functor of the structure: (structure name)/ n
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Prolog Terms

@ Classification of Prolog terms — built-in predicates for classification

Term var(X) X variable
T nonvar(X)  Xnon-variable
var nonvar atomic(X) X constant
T compound(X) X structure
atomic compound atom(X) X name constant
number (X) X number
atom  number integer(X) Xinteger
T Float(X) X foat
integer float

@ A classification predicate checks the current state of its argument, therefore it has no
declarative semantics:

| - X =1, integer(X). — yes
| ?- integer(X), X = 1. = no
| ?- atom(’Istvan’), atom(istvan). — yes
| ?- compound(leaf(X)). — yes
| ?- compound(X). = no
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Unifi cation: Substitution of Variables

@ The concept of substitution:

@ The substitution is a function which assigns terms to certain variables.
@ Example: 0 = {X—a, Y—s(b, B), Z—C}. Here Dom(c) = {X,Y, Z}
@ The o substitution assigns a to X, s(b,B) to Y and ¢ to z. Notation: Xo = a etc.

@ The substitution function can be naturally extended to all terms:
@ T'o: o applied to term T': the substitution o is applied simultaneously to 7.
® Example: f (g(Z, h), A Y)o =f(g(C h), A s(b, B))

@ The composition of o and ¢ substitutions (o ® §) — applying them one after the other
@ The substitution of 0 ® 6 assigns to x € Dom(o) variables the (xo)6 term, and to other

y € Dom(0)\ Dom/(o) variables it assigns y6 (Dom(o ® ) = Dom(c) U Dom(0)):
o0®0={z— (x0)0 |z € Dom(o)}U{y <« yb |y e Dom(0)\Dom(c) }
@ eg. incase of § = {X—b, B—d} 0 ® § = {X—a, Y—s(b, d), Z—C, B—d}
@ Aterm G is more general than S, if there exists a substitution p, such that S = Gp

@ Example: G =f (A, Y) is more general than S =f (1, s(Z) ), because in case of
p={A—1,Y—s(Z2) },itholds that S = Gp.
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Unifi cation —the Data Manipulation Mechanism of Prolog

@ Unification: making two Prolog terms (eg. a procedure call and a procedure head) the same, by
possibly instantiating the variables.

@ Examples

@ Input parameter passing — substitutes the head variables:
call: grandparent(’ Imre”, GP),
head: grandparent(C, G),
substitution: ¢ = “Imre”, G = GP
@ Output parameter passing — substitutes the variables of the call:
call: parent(’Imre”, P),
head: parent(’Imre”, ’Istvan’),
substitution: P = ~Istvan”
@ Input/Output parameter passing — substitutes the variables of both the call and the head:
call: sum_tree(leaf(5), Sum)
head: sum_tree(leaf(V), V)
substitution: v = 5, Sum = 5
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Unifi cation: the Most General Unifi er

@ Terms A and B can be unified if there exists a substitution o such that Ac = Bo. This
Ao = Bo is called a common instance of A and B.

@ Two terms usually may have more common instances.

@ Example: Common instances of A =f (X, Y) and B =f (s(U), U) canbe
@ () =f (s(a), a) with the substitution of 0y = {X<s(a), Y<a, U—a}
@ (), =f (s(U), U) with the substitution of oy = {X«s(U), YU}
@ C; =f (s(Y),Y) with the substitution of o3 = {X<—s(Y), U-Y}

@ The most general common instance of A and B is a term C' which is more general than all
common instances of A and B.

@ In the example above C5 and Cj are the most general common instances
@ Theorem: The most general common instance is unique, except for variable renaming.

@ The most general unifier of A and B is a substitution o = mgu(A, B) for which Ao and Bo are
the most general common instances of the two terms.

@ In the example above o5 and o3 are most general unifiers.

@ Theorem: The most general unifier is unique, except for variable renaming.
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The Unifi cation Algorithm Unifi cation examples

@ The Unification Algorithm

@ input: two Prolog terms: A and B
@ the task: determine the unifiability of the two terms
@ the result: in case of success, return the most general unifier (mgu(A4, B)). @ (4.) The name and arity of A and B is the same
@ The unification algorithm, i.e. determining o = mgu(A, B) : Eg; "DUE |Veaf (g;) - eaf((55) )sf)[u?s t:)en ?WSd );}{V*5} =0
.) ngu( Vo, = ngu(5, rd) = {S«5} = 09

@A = sumtree(leaf(V), V),B = sumtree(leaf(5), S)

1. If Aand B are the same variables or constants, then o = {} (empty substitution). ° AB) = (Vo5 S5

2. Else, if A is a variable, then o = {A «— B}. somgu(A, B) = o1 ® 02 = {Ve=5, S5}

3. Else, if B is a variable, then ¢ = {B — A}. @ A = node(leaf(X), T),B= node(T, |eaf(3))

4. Else, if A and B are compounds with the same name and arity and their argument lists are @ (4.) The name and arity iof A and B is the same

Av-.. Ay and Bi,...., By resp., and ® (a) mgu(l eaf (X), T) (3rd) = {Tleaf (X)} =0y

. The most general unifier of A, and B, is o, ® (b) mgu(Toy, leaf(3)) = mgu(leaf(X), |eaf(3)) (4th, then2nd) =
b. The most general unifier of Ayo; and Bsoy iS o9, (X3} =0y
((j:. The most general unifier of A3oy05 and Bso09 is o3, ® 50 mgu(A, B) = 01 ® o3 — {T—| eaf (3), X—3}

theno =01 @0 @03 R .. ..
5. In all other case A and B are not unifiable.
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Unifi cation Examplesin practice A Further Issue in Unifi cation: the Occurs Check

o . . @ Question: Are X and s(X) unifiable?
@ Built-in predicates related to unification: Q SCO
@ The mathematical answer is : no, A variable is not unifiable with a structure in which it

appears (checking this is called the “occurs check”).
@ The occurs check is costly, so it is not used by default, consequently cyclic terms may be

@ X = v unifies its two arguments, fails, if this is not possible.
@ X \= Y succeeds, if the two arguments are not unifiable, otherwise itfails.

@ Examples: created.
| ?- 3+(4+5) = Left+Right. @ It is available as a standard predicate: uni fy_wi t h_occurs_check/ 2
| d'—irt :(35 Right = 3’? ? leaf(a)) @ Extension (eg. SICStus): The proper handling of cyclic terms created because not
?- node(leaf(X), T) = node(T, leaf(l3)). .
T = leaf(3), X = 3 performing occurs checks.
| 2- X*Y = 1+2*3. % because 1+2*3 = 1+(2*3)
no @ Examples:

| 7= X*Y = (1+2)*3.
X =142, Y =32
| 2- (X, 3/Y-X, Y) = (U, B-a, 3).
B=3/3,U=a, X=a, Y=32?
27— F(F(X), U+2*2) = F(U, F(3)+Z).
U= f@), X=3,Z=2%27

| ?2- X = s(1,X).
X =s(@,s1,s1,s@,sC--DN)) ?
| ?- unify_with_occurs_check(X, s(1,X))-
no
] 2- X =s(X), Y =s((Y)), X =Y.
X = s(s(s(s(s(---))))). Y = s(s(s(s(s(---))))) ?
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