DP-1

Declarative programming

Péter Hanak
hanak@ nf . bne. hu

Department of Control Engineering and Information Technology
Péter Szeredi, Gergely Lukacsy, Andras Gyorgy Békés
{szeredi, | ukacsy, bekesa} @s. brre. hu

Department of Computer Science and Information Theory

Deklarativ programozés. BME VIK, 2005. tavaszi félév (Kovetelmények)

DP-3

Declarative Programming: Information

Homepage, Mailing-list
@ Homepage: <http://dp.iit.bne. hu>

@ Mailing-list: <ht t p: //www. i it. bme. hu/ mai | man/1istinfo/dp-1>.
Mails to the list members have to be sent to <dp-1 @wwv. i i t. brre. hu>.
Only list members’ mail arrives to others without moderator approval.

Lecture Notes

@ Szeredi, Péter and Benk®, Tamas: Declarative Programming. Introduction to logic
programming (in Hungarian)

@ Hanék, D. Péter: Declarative Programming. Introduction to functional programming (in
Hungarian)

@ Electronic version is available on the homepage (ps, pdf)

Deklarativ programozés. BME VIK, 2005. tavaszi félév (Kovetelmények)

REQUIREMENTS, INFORMATION

Declarative Programming: Information (cont.)

DP-4

Compiler and Interpreter
@ SICStus Prolog — version 3.12 (license may be requested through the ETS)
@ Moscow SML (2.0, freeware)
@ Both of them are installed on kenpel en. i nf. bre. hu.
@ Both of them can be downloaded from the homepage (linux, Win95/98/NT)
@ Exercising/tutoring through ETS on the Web (see homepage)
@ System manuals in HTML and PDF format
@ Other programs: swiProlog, gnuProlog, poly/ML, sminj
@ emacs-wordprocessor has SML and Prolog mode (linux, Win95/98/NT)

Deklarativ programozés. BME VIK, 2005. tavaszi félév

(Kdvetelmények)

DP-5

Declarative Programming: Requirements during the Semester

Big HomeWork (BHW)

@ In both programming language (Prolog, SML)
@ Work independently!
@ Programs should be efficient (time limit!), well documented (with comments)

@ Developer documentation: 5-10 pages, for both programming languages (TXT, TeX/LaTeX,
HTML, PDF, PS; BUT NOT DOC or RTF)

@ Announced in the 6th week, on the homepage, with downloadable frame-program
@ Deadline in the 12th week; submission in electronic format (see homepage)

@ The test-cases handed out and the test cases used at scoring are not the same, but of similar
difficulty

@ The programs which perfectly solve all the test cases, participate in a ladder competition
(winners get additional points)

Deklarativ programozés. BME VIK, 2005. tavaszi félév (Kovetelmények)

DP-7

Declarative Programming: Requirements during the Semester (cont.)

Small HomeWork (SHW)
@ 2-3 exercises from both Prolog and from SML
@ Handing in: electronically (see homepage)
@ Optional, but very much recommended

@ Every good solution earns 1 additional point

Using the Web Exercising system
@ Optional, but indispensable for the successful midterm-test and exam!

@ Embedded in the ETS system (see homepage)

Deklarativ programozés. BME VIK, 2005. tavaszi félév (Kovetelmények)

DP-6

Declarative Programming: Requirements during the Semester (cont.)

Big HomeWork (cont.)

@ optional, but very much recommended!

@ Can also be handed in if solved only in one programming language

@ Until the deadline homeworks can be handed in several times, only the last one is scored
@ Scoring (for both languages):

@ Each of the 10 test cases, which run correctly and within the time limit earns 0.5 points/test
case, max 5. points in total, if at least 4 cases are correct

@ for the documentation, the readability of the code and comments max. 2,5 points

@ That means max. 7,5 total points/language

@ The weight of the BHW in the final mark: 15% (15 points from 100 points)

Deklarativ programozéas. BME VIK, 2005. tavaszi félév (Kovetelmények)

DP-8

Declarative Programming: Requirements during the Semester (cont.)

Midterm-test, Supplementary Midterm-test (MTT, SMTT, SSMTT)
@ The midterm-test is mandatory, closed book test!

@ Rule of 40% (for the pass, minimum 40%/language has to be obtained).
Exception: those students who have already obtained a signature.

@ The MTT is in the 7th-10th week, the SMTT is in the last week of the semester

@ A single opportunity for SSMTT (in reasonable case) will be given in the first three weeks of the
exam-period

@ The material covered by the MTT is the first two blocks (1th-7th week)
@ The material covered by the SMTT and. the SSMTT is the same as that of the MTT
@ The test weights 15% (15 points from 100 points) in the final mark

@ |f more tests are written the highest score is valid

Deklarativ programozés. BME VIK, 2005. tavaszi félév (Kdvetelmények)

DP-9

Declarative Programming: Exam

Exam

@ Those students can sign in to the exam, who have already got a signature in the given semester,
or up to 4 semesters before

@ The exam is oral, with preparation in writing
@ Prolog, SML: Several smaller tests (program-coding, -analyzing) for 2x35 points

@ The final points obtained are the sum of the following: the max. 70 points got in the exam, plus

the points got in the present semester: for MTT: max. 15 points, for BHW: max. 15 points, plus DECLARATIVE AND IMPERATIVE PROGRAMMING

the additional points (SHW, ladder-competition)
@ We do not accept points from earlier semesters!
@ The exam is closed-book exam, but it is possible to ask for some help
@ \We check the "authenticity" of the BHW and MTT
@ Rule of 40% (for the pass minimum 40%/language have to be obtained)

@ Earlier exam questions are available on homepage

Deklarativ programozés. BME VIK, 2005. tavaszi félév (Deklarativ Programozas)

DP-11 DP-12

Classification of Programming Languages Imperative and Declarative Programming Languages

@ Imperative Program

@ Imperative style, using commands
P ing| —styl o) .
rogramming fanguages — styles @ Variables: the value of a variable can be modified

@ example in C:
int pow(int a, int n) { // pow(a,n) = a”™n
// Llet p be 1!

. . int p=1;
Imperative Declarative while (n > 0) { // Repeat until n>0 :
Fortran ///////// \\\\\\\\\\ n = n-1; // Decrease n by 11!
Algol . p = p*a; } // Multiply p by a!
c Functional Languages Logic Languages return p; } 7/ Return the value of p
C++ LIsP QL @ Declarative Program
ML Prolog _ i .
@
CLP languages Declarative style, equations and statements

@ Variable: has a single value, unknown at program writing time
@ SML example :
fun pow(a, n) =
ifn>0 G Ifn>0%
then a*pow(a,n-1) (* then a™n = a*a”™(n-1) *)
else 1 (* else a™n =1 %)

Deklarativ programozés. BME VIK, 2005. tavaszi félév (Deklarativ Programozas) Deklarativ programozés. BME VIK, 2005. tavaszi félév (Deklarativ Programozas)

DP-13

Declarative Programming in Imperative Language

@ |t is possible to program in C in a declarative way

@ If we do not use: assignments, loops, jumps, etc.,
@ One can use: (recursive) functions, if-then-else

@ The powd is a declarative version of the pow function:

/* powd(a,n) = a™n */ int powd(int a, int n) {

if (n>0) /* 1fn>0%*

return a*powd(a,n-1); /* then a™n = a*a”~(n-1) */
else

return 1; /* else a™n =1 */

}

@ The (above type of) recursion is expensive, requires non-constant memory :-(.

Deklarativ programozés. BME VIK, 2005. tavaszi félév (Deklarativ Programozas)

DP-15

Right Recursive Functions

@ |s it possible to write a right recursive code for the exponentiation (pow(a,n)) task?

@ The problem is that when "coming out" from the recursion we are not able to do anything
more, so the result has to be available inside the last call.

@ The solution: define an auxiliary function, which has an additional argument, a so called
accumulator.

@ Right recursive implementation of pow(a,n):

/* Auxiliary function: powa(a, n, p) = p*a™n */
int powa(int a,int n, int p) {
if (n>0)
return powa(a, n-1, p*a);
else
return p;

}

int powr(int a, int n){
return powa(a, n, 1);

}

Deklarativ programozés. BME VIK, 2005. tavaszi félév (Deklarativ Programozas)

DP-14

Efficient Declarative Programming

@ The recursion can be efficiently implemented under certain conditions

@ Example: Decide, if an a natural number is a power of a number b:
/* ispow(a,b) = 1 <=> exits i, such that b’ = a. Precondition: a,b > 0 */

int ispow(int a, int b) {
/* again: */

if (a==1) return 1;
else if (a%b == 0) return ispow(asb, b); /* a = a/b; goto again; */
else return 0;
¥
@ Here the recursive call can be implemented as the assignment and jump shown in the
comment!
@ This can be done, because after the return from the recursive call, we immediately exit the
function call.

@ This kind of function invocation is called right recursion or terminal recursion

@ The Gnu C compiler with a sufficient optimization level (gcc -02) generates the same code
from the recursive definition as from the non-recursive one!

Deklarativ programozéas. BME VIK, 2005. tavaszi félév (Deklarativ Programozas)

DP-16

Cékla: A Declarative part of the C programming language

@ Limitations:
@ Types: only int
@ Commands: if-then-else, return, block
@ Condition part: ((exp) (compare-op) (exp))

@ (compare-op):< | > | == | \= | >= | <=
@ Expressions: built from variables and integers using binary operators and function calls
@ (arithmetical-op): + | - | * 1 7 1 % |

@ The Cékla compiler is available on the homepage

Deklarativ programozés. BME VIK, 2005. tavaszi félév (Deklarativ Programozas)

DP-17

The Syntax of the Cékla Language

@ the syntax uses the so called. DCG (Definite Clause Grammar) symbol:

@ terminal symbol: [terminal]
@ non-terminal: non_terminal
@ repetition (0, 1, or more repetition, is not in DCG): (to be repeated).. .

@ The syntax of program

program --> function_definition ...
function_definition --> head, block.
head --> type, identifier, [’(C], formal_args, [*)’]-
type --> [int].
formal_args --> formal_arg, ([","], formal_arg)... ; [1-
formal_arg --> type, identifier.
block --> [’{’]1, declaration..., statement..., [*}’].
declaration --> type, declaration_elem, declaration_elem..., [7;”].-
declaration_elem --> identifier, [’="], expression.
Deklarativ programozés. BME VIK, 2005. tavaszi félév (Deklarativ Programozas)

DP-19

1st Small Homework

@ The sequence of symbols, which is equal to an other sequence of symbols written twice in a row,
is called a stutterer. More precisely:

@ a sequence of symbols is a stutterer if its length is even (2n) and the first n elements are the
same as the last n elements

@ Examples: adogadog, 10311031

@ A program is to be written in the Cékla language which solves the following problem:

@ the main function should be: stutterer(a) = b meanomg: b is the smallest natural number
such that the a natural number written in base b is a stutterer.

@ Examples:
@ stutterer(4) = 3
@ stutterer(10) = 2
@ stutterer(6) = 5
@ stutterer(8) = 3

Deklarativ programozés. BME VIK, 2005. tavaszi félév (Deklarativ Programozas)

DP-18
Syntax of Cékla, Continued
@ Syntax of Commands
statement --> [if], test, statement, optional_else_part
; block
; [return], expression, [7;”]
; 7571
optional_else_part --> [else], statement ; []-
test --> [7C1, expression, comparison_op, expression, [?)’].
@ Syntax of Expressions
expression --> term, (additive_op, term)... .
term --> factor, (multiplicative_op, factor)...
factor --> identifier
; identifier, [7(C’], actual_args, [*)’]
; constant
; [’C1. expression, [*)’]-
constant --> integer.
actual_args --> expression, ([”,”], expression)... ; [1-
comparison_op --> <15 0> 0=="1: [\="1; ['>71 5 ['<="1.
additive_op --> ’+’1;:; [*-°1-
multiplicative _op --> [’*°1: 077’1 ; [’%"]-
Deklarativ programozéas. BME VIK, 2005. tavaszi félév (Deklarativ Programozas)
DP-20
A Somewhat More Complicated Cékla Program
@ The task: Convert a decimal number num— which is between 0 and 1023 — to a 10 digit
decimal number containing only digits 0 and 1, so that when this sequence of digits is
interpreted as a binary number, its value is num. Eg. bin(5) = 101, bin(37) = 100101.
@ Solution in (imperative) C and in Cékla:
int bin(int num) { int bina(int num,
int bp = 512; int bp,
int dp = 1000000000; int dp,
int bin = 0; int bin) {
while (bp > 0) { if (bp > 0) {
ifT (num >= bp) { if (num >= bp)
num = num-bp; return bina(num-bp,bp/2,dp/10,bin+dp);
bin = bin+dp; else
3} return bina(num, bp/2,dp/10,bin);
bp = bp 7 2; b
dp = dp 7/ 10; it (num > 0)
3} return -1;
if (hum > 0) else
return -1; return bin;
else 3}
return bin; int bind(int num) {
} return bina(num, 512, 1000000000,0); }

Deklarativ programozés. BME VIK, 2005. tavaszi félév (Deklarativ Programozas)

DP-21

Declarative Programming Languages — Lessons Learned from Cékla

@ What have we lost?

@ the mutable variables (variables whose value can be changed),
@ the assignment, loop, etc. statements
@ in general: a changeable state

@ How can we handle state in a declarative way?

@ the state can be stored in the parameters of the (auxiliary) functions,
@ the change of the state (or keeping the state unchanged) has to be explicit!

@ What have we won?

@ Stateless Semantics: the meaning of a language element does not depend on a state
@ Referential transparency — eg. if f(x) = 22, then f(a) substitutable with a2.
@ Single assignment — parallel execution made easy.

@ The declarative programs are decomposable:
@ The parts of the program can be written, tested and verified independently
@ |t is easy to make deductions regarding the program eg. proving its correctness.

Deklarativ programozés. BME VIK, 2005. tavaszi félév (Deklarativ Programozas)

DP-23

Declarative Programming — Why do We Teach it?

@ New, high-level programming elements
@ recursion
@ pattern matching
@ backtrack
@ New style of thinking
@ decomposable programs: parts of a program (relations, functions) have independent meaning
@ verifiable programs: the code and the meaning of a program can be compared.
@ New application areas
@ symbolic application
@ tasks requiring deduction
@ high reliability software systems

Deklarativ programozés. BME VIK, 2005. tavaszi félév (Deklarativ Programozas)

DP-22

Declarative Programming Languages — Motto

@ WHAT rather than HOW: The program describes the task to be solved (WHAT to solve), rather
than the exact steps of solution process (HOW to solve).

@ In practice both aspects have to be taken care of — dual semantics:

@ Declarative semantics — What (what kind of task) does the program solve;
@ Procedural semantics — How does the program solve it.

Deklarativ programozéas. BME VIK, 2005. tavaszi félév

(Deklarativ Programozas)

LP-24

An Example dialog with a 50-line Prolog program

(Translation from Hungarian.)

| ?- dialog.

|: 1 am a Hungarian lad.
Under st ood

|: Who am 1?

Hungari an | ad

| :Who is Péter?

| do not know.

| : Péter is student.
Under st ood

| : Péter is smart student.
Under st ood

|: Who is Péter?

st udent

smart student

|: I am happy.
Under st ood

| You are a Prolog program.
Under st ood

|: Who am 1?

Hungari an | ad

Happy

|: You are clever.
Under st ood

| You are the center of the world.
Under st ood

| : Who are You?

a Prol og program

C ever

the center of the world

| : Really?

I do not understand

|: 1 am fed up with You .

So am | .

Deklarativ programozés. BME VIK, 2005. tavaszi félév

(Logikai Programozas)

INTRODUCTION TO LOGIC PROGRAMMING

LP-27

The Outline of the LP Part of the Course

@ Block 1: The basics of Prolog programming langauge (6 lectures)
@ Logic background
@ Syntax
@ Execution mechanism

@ Block 2: Prolog programming methods (6 lectures)

@ The most important built-in procedures
@ More advanced language and system elements

@ Outlook: New directions in logic programming (1 lecture)

Deklarativ programozés. BME VIK, 2005. tavaszi félév (Logikai Programozas)

LP-26

The Basic Idea of Logic Programming

@ Logic Programming (LP):

@ Programming using mathematical logic
@ a logic program is a set of logic statements
@ the execution of a logic program is a deductive process

@ But: the deduction in (first order) logic requires traversing a huge search space
@ | et us restrict the language of the logic
@ Select a simple deduction algorithm, which can be followed by humans

@ The most widespread implementation of LP is the Prolog language: Programming in logic

@ a severely restricted sublanguage of the first order predicate logic, the so called definite or
Horn-clause language

@ Execution mechanism: pattern matching directed procedure invocation with
backtracking search.

Deklarativ programozéas. BME VIK, 2005. tavaszi félév (Logikai Programozas)

LP-28

Short Historical Overview of Prolog/LP

60s Early theorem proving programs

1970-72 The theoretical basis of logic programming (R A Kowalski)
1972 The first Prolog interpreter (A Colmerauer)

1975 The second Prolog interpreter (P Szeredi)

1977 The first Prolog compiler (D H D Warren)

1977-79 Several trial Prolog applications in Hungary

1981 The Japanese 5th generation project chooses logic
programming
1982 The Hungarian MProlog is one of the first commercial Prolog

implementations
1983 A new compiler model and abstract Prolog machine (WAM)
appears (D H D Warren)
1986 The beginning of the Prolog standardization
1987-89 New logic programming languages (CLP, Godel stb.)
1990-... Prolog appears on parallel computers
Highly-efficient Prolog compilers

Deklarativ programozés. BME VIK, 2005. tavaszi félév (Logikai Programozas)

LP-29
Information about Logic Programming

@ Implementations of Prolog:

@ SWI Prolog: http://www.swi-prolog.org/
@ SICStus Prolog: http://www.sics.se/sicstus
@ GNU Prolog: http://pauillac.inria.fr/~diaz/gnu-prolog/

@ Network information sources:

@ The WWW Virtual Library: Logic Programming:
http://www._afm.sbu.ac.uk/logic-prog

@ CMU Prolog Repository:
(within http://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/lang/prolog/)
@ Main page: 0.html
@ Prolog FAQ: fag/prolog.faq
@ Prolog Resource Guide: fag/prg_1.faq, fag/prg_2.faq

Deklarativ programozés. BME VIK, 2005. tavaszi félév (Logikai Programozas)

LP-31

English Textbooks on Prolog

@ Logic, Programming and Prolog, 2nd Ed., by UIf Nilsson and Jan Maluszynski, Previously
published by John Wiley & Sons Ltd. (1995)

Downloadable as a pdf file fromht t p: / / www. i da. | i u. se/ ~ul fni /| pp

@ Prolog Programming for Artificial Intelligence, 3rd Ed., Ivan Bratko, Longman, Paperback -
March 2000

@ The Art of PROLOG: Advanced Programming Techniques, Leon Sterling, Ehud Shapiro, The
MIT Press, Paperback - April 1994

@ Programming in PROLOG: Using the 1SO Standard, C.S. Mellish, W.F. Clocksin,
Springer-Verlag Berlin, Paperback - July 2003

Deklarativ programozés. BME VIK, 2005. tavaszi félév (Logikai Programozas)

LP-30

EMPTY

This page is intensionally left blank

Deklarativ programozéas. BME VIK, 2005. tavaszi félév (Logikai Programozas)

LP-32
Our first Prolog program: checking if a number is a power of another

@ A simple example in Cékla and Prolog:
/* ispow(a,b) = 1 <=> exits i, such that b’ = a. Precondition: a,b > 0 */

int ispow(int num, int base) { ispow(Num, Base) :-

if (num == 1) ¢ Num =:= 1
return 1; -> true
else if (num%base == 0) ; Num rem Base =:= 0,
return ispow(num/base, base); Numl is Num//Base,
else ispow(Numl, Base)
return 0;)-
¥

@ ispow is a Prolog predicate, that is a procedure (function) returning a Boolean value.
@ The procedure consists of a single clause, of form Head: -Body.
@ The head contains the parameters Num and Base which are variables (written in capitals!)

@ The body consists of a single goal which is a conditional structure:
if Cond then ThenCode else ElseCode = (Cond -> ThenCode ; ElseCode)

@ The “true”, “A =:= B” and “A is B” structures are calls of built-in predicates.

Deklarativ programozés. BME VIK, 2005. tavaszi félév (Logikai Programozas)

LP-33

Some Built-In Predicates

@ Unification: X = Y: The x és Y symbolic expressions can be brought to the same form, by
instantiating variables (and carries out these instantiations).

@ Arithmetic predicates
@ X is Exp: The arithmetic expression Exp is evaluated and its value is unified with X.
@ Expl<Exp2, Expl=<Exp2, Expl>Exp2, Expl>=Exp2, Expl=:=Exp2, Expl=\=Exp2:
The values of arithmetic expressions Exp1 and Exp2 are in the given relation with each other
=:=means arithmetic equality, =\= means arithmetic inequality).
@ If any of Exp, Expl or Exp2 isnota ground (variable-free) arithmetic expressions =-error.
@ the most important arithmetic operators +, -, *, /, rem, // (integer-div)
@ Output predicates
@ write(X): The Prolog expression X is written out (displayed on the screen).
@ nI: A new line is written out.
@ Other predicates
@ true, fail: Always succeeds vs. always fails.
@ trace, notrace: Turns (exhaustive) tracing on/off.

Deklarativ programozés. BME VIK, 2005. tavaszi félév (Logikai Programozas)

LP-35

Writing General (non Boole-valued) Functions in Prolog

@ Example: Calculating the power of a natural number in Cékla and Prolog:

/* powd(a,n) = a™n */ /* powd(A, N, P): AN = P. */

int powd(int a, int n) { powd(A, N, P) :-
if (n>0) (N>O0
return a*powd(a,n-1); -> N1 is N-1,
powd(A, N1, P1),
P is A*P1
else H P=1
return 1;)-
}

| ?- powd(2, 8, P).
P = 256 ?

@ The predicate powd with 3 arguments corresponds to thepowd function with 2 arguments.

@ The two arguments of the function correspond to the first two arguments of the predicate, which
are input i.e. instantiated arguments.

@ The result of the function is the last, output argument of the predicate, which is usually an
uninstantiated variable.

Deklarativ programozés. BME VIK, 2005. tavaszi félév (Logikai Programozas)

LP-34

Built-In Predicates for Program Development

@ consult(File) or [File]: Reads the program from the File and stores it in interpreted
format. (if File = user = read from the terminal)

@ listingor listing(Predicate): Lists all interpreted predicates, or all interpreted predicates
with the given name.

@ compile(File): Reads the program from the File and compiles it.
@ The compiled format is faster, but cannot be listed, and tracing is slightly less accurate.

@ halt: Exit the Prolog system.

> sicstus

SICStus 3.11.0 (x86-1inux-glibc2.3): Mn Oct 20 15:59: 37 CEST 2003
| ?- consult(ispow).

% consul ted /home/ user/ispow. pl in nodul e user, 0 nsec 376 bytes
yes

| ?- ispow(8, 3).

no

| ?- ispow(8, 2).

yes

| ?- listing(ispow).

(...)

ye

| ?- halt.

>

Deklarativ programozéas. BME VIK, 2005. tavaszi félév (Logikai Programozas)

LP-36

Predicates with Multiple Clauses

@ The conditional structure is not a basic element of the Prolog language (it was not there in the
first Prologs)

@ Instead a conditional a predicate with two, mutually exclusive clauses can be used:

/* powd(A, N, P): AN = P. */ powd(A, N, P) :-
powd2(A, N, P) :-

(N>O N > 0,
-> N1 is N-1, N1 is N-1,
powd(A, N1, P1), powd2(A, N1, P1),
P is A*P1 P is A*P1.
H P=1 powd2(A, N, 1) :- N =< 0.

@ Ifa predicaie has multiple clauses, Prolog tries all of them :

@ If the 2nd parameter of pow2 (N) is positive, then the first clause is used,

@ otherwise (i.e. if N =< 0) the second one.
@ If the second clause of powd2 is: powd(A,0,1), then a call with a negative exponent fails.
@ In general the clauses need not be exclusive: a single question can lead to multiple answers:

equation_root(A, B, C, X) :- X is (-B + sqrt(B*B-4*A*C))/(2*A).
equation_root(A, B, C, X) :- X is (-B - sqrt(B*B-4*A*C))/(2*A).

Deklarativ programozés. BME VIK, 2005. tavaszi félév (Logikai Programozas)

LP-37

Predicates with Multiple Answers — Family Relationships

@ Data

A child—parent relation, eg. family relations in the family of King Stephen I, the first king of

Hungary:
child | parent
Imre | Istvan

Imre Gizella

Istvan | Géza

Istvan | Sarolta

Gizella | Civakodé Henrik
Gizella | Burgundi Gizella

@ The Exercise:

We have to define the grandchild—grandparent relation, i.e. write a program which finds the

grandparents of a given person.

Deklarativ programozés. BME VIK, 2005. tavaszi félév

(Logikai Programozas)

LP-39

Data Structures in Declarative Languages — Example

@ The binary tree data structure is

@ either a node (node) which joins two subtrees (left, right) into a single tree

@ or a leaf (1eaf) which contains an integer

@ Let us define binary tree structures in different languages:

% Decl aration of a structure in C
enum treetype Node, Leaf; struct tree {
enum treetype type;
union {
struct { struct tree *left;
struct tree *right;

} node;
struct { int value;
} leaf;
¥ u;
}:

% Data type declaration in SM.
datatype Tree =
Node of Tree * Tree
| Leaf of int

% Data type description in Prolog
- type tree --->

node(tree, tree)
| leaf(int).

Deklarativ programozés. BME VIK, 2005. tavaszi félév

(Logikai Programozas)

LP-38

The Grandparent Problem — Prolog Solution

% parent(C, P):C s parent P

parent(’Imre”, “Istvan’). % Who are Imre’ s grandparents?
parent(’Imre’, *Gizella”). | ?- grandparent(’Imre”, GP).
parent(’ Istvan’, ’Géza’). GP = ’Géza” ? ;
parent(’Istvan’, *Sarolt”). GP = ’Sarolt” ? ;
parent(’Gizella’, GP = ’Civakoddé Henrik” ? ;
>Civakodo6 Henrik?). GP = ”Burgundi Gizella” ? ; no

parent(’Gizella’,
*Burgundi Gizella”).

% Who are Géza' s grandchil ds?

] ?- nagyszuloje(GC, ’Géza’).

GC = “Imre” ? ; no

% Child’s grandparent is Grandparent.

grandparent(Child, Grandparents) :-
parent(Child, Parents),
parent(Parents, Grandparents).

Deklarativ programozéas. BME VIK, 2005. tavaszi félév (Logikai Programozas)

LP-40

Calculating the Sum of a Binary Tree

@ To calculate the sum of the leaves of a binary tree:

@ if the tree is a node, add the sums of the two subtrees
@ if the tree is a leaf, return the integer in the leaf

% C function (declarative)
int sum_tree(struct tree *tree) {
switch(tree->type) {

% Prol og procedure (predicate)
sum_tree(leaf(Value), Value).
sum_tree(node(Left,Right), S) :-

case Leaf: sum_tree(Left, S1),
return tree->u.leaf.value; sum_tree(Right, S2),
case Node: S is S1+S2.
return

sum_tree(tree->u.node.left) +
sum_tree(tree->u.node.right);

}

Deklarativ programozés. BME VIK, 2005. tavaszi félév (Logikai Programozas)

LP-41 LP-42

Sum of Binary Trees Peano Arithmetic — Addition

@ Prolog sample run: @ We can define the addition for natural numbers using Peano axioms if the numbers are built by

% sicstus -f repeated application of the s(x) ,,successor” function:

SICStus 3.10.0 (x86-linux-glibc2.1): Tue Dec 17 15:12:52 CET 2002 1 = s(0), 2 = s(s(0)), 3 = s(s(s(0))), --- (Peano representation).
Licensed to BUTE DP course
| ?- consult(tree). % plus(X, Y, Z): The sum of X and Y is Z (X,Y,Z are in Peano representation).
% consulting /home/szeredi/peldak/tree.pl... plus(0, X, X). % 0+X = X.
% consulted /home/szeredi/peldak/tree_pl in module user, O msec 704 bytes plus(s(X). Y, s(2)) :-
yes plus(X, Y, 2). % s(X)+Y = s(X+Y).
| ?- sum_tree(node(leaf(5),
node(leaf(3), leaf(2))), Sum).
Sum = 10 ? ;

no | ?- plus(s(0), s(s(0)), 2). Z = s(s(s(@))) ? ; no % 1+2 = 3
| ?- sum_tree(Tree, 10).

@ The plus predicate can be used in multiple directions:

Tree = leaf(10) ? : | ?- plus(s(0), Y, s(s(s(0))))- Y =s(s()) ? ; no % 3-1 =2

. A - -

; Ing?nt;gt:gn 3;:0;4|n argument 2 of is/2 | 2= plus(X, Y, s(s(0))). X =0, Y =s(s) ? ; % 2 = 042

ig_hé,t =t X=s(), Y=5(0)?; % 2=1+1

% . X=s((), Y=07?; % 2=2+0

no
@ The cause of the error: the built-in arithmetic is one-way: the 10 is S1+S2 call causes an error! I -
Deklarativ programozés. BME VIK, 2005. tavaszi félév (Logikai Programozas) Deklarativ programozéas. BME VIK, 2005. tavaszi félév (Logikai Programozas)
LP-43 LP-44
Building Trees with a Given Sum The Data Structure of Prolog, the Notion of Term
@ Building a tree with a given sum, using Peano arithmetic: .
@ constant (atomic)
sum_tree(leaf(Value), Value). _ i .
sum_tree(node(Left, Right), S) :- @ number: numeric constant (number) — integer or float, eg. 1, -2.3, 3.0e10
plus(Si, s2, 9), @ name: symbolic constant (atom), eg. *Istvan®, ispow, +, -, <, sum_tree

S1 \= 0, S2 \=0, % X \=Y built-in procedure, meaning
% X and Y cannot be unified
% 0 excluded, to avoid oo many solutions.

@ compound or structure (compound)

sum_tree(Left, S1),
sum_tree(Right, S2).

the running of the procedure:

| ?- sum_tree(Tree, s(s(s(0)))).

Tree = leaf(s(s(s(0)))) ? ; % 3
Tree = node(leaf(s(0)),leaf(s(s(0)))) ? ; % (1+2)
Tree = node(leaf(s(0)),node(leaf(s(0)),leaf(s(0)))) ? ; % (1+(1+1))
Tree = node(leaf(s(s(0))),leaf(s(0))) ? ; % (2+1)
Tree = node(node(leaf(s(0)),leaf(s(0))),leaf(s(0))) ? ; % ((1+1)+1)
no
Deklarativ programozés. BME VIK, 2005. tavaszi félév (Logikai Programozas)

@ so called canonical form: (name of structure) ((arg;), ...)
@ the (name of structure) is an atom, the (arg;) arguments are arbitrary Prolog terms
@ examples: leaf(1), person(william,smith,2003,1,22), <(X,Y), is(X, +(Y,1))
@ syntactical "sweeteners”, ie. operators: X is Y+1 = is(X, +(Y,1))
@ Variable (var)

@ eg. X, Parent, X2, _valt, _, _123

@ The variable is initially uninstantiated, ie. it has no value, it can be instantiated to an arbitrary
Prolog term (including another variable), in the process of unification (pattern matching)

Deklarativ programozés. BME VIK, 2005. tavaszi félév

(Logikai Programozas)

