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Declarative Programming: Information

Homepage, Mailing-list
@ Homepage: <http://dp.iit.bne. hu>

@ Mailing-list: <ht t p: //www. i it. bme. hu/ mai | man/1istinfo/dp-1>.
Mails to the list members have to be sent to <dp-1 @wwv. i i t. brre. hu>.
Only list members’ mail arrives to others without moderator approval.

Lecture Notes

@ Szeredi, Péter and Benk®, Tamas: Declarative Programming. Introduction to logic
programming (in Hungarian)

@ Hanék, D. Péter: Declarative Programming. Introduction to functional programming (in
Hungarian)

@ Electronic version is available on the homepage (ps, pdf)
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REQUIREMENTS, INFORMATION

Declarative Programming: Information (cont.)
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Compiler and Interpreter
@ SICStus Prolog — version 3.12 (license may be requested through the ETS)
@ Moscow SML (2.0, freeware)
@ Both of them are installed on kenpel en. i nf. bre. hu.
@ Both of them can be downloaded from the homepage (linux, Win95/98/NT)
@ Exercising/tutoring through ETS on the Web (see homepage)
@ System manuals in HTML and PDF format
@ Other programs: swiProlog, gnuProlog, poly/ML, sminj
@ emacs-wordprocessor has SML and Prolog mode (linux, Win95/98/NT)
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Declarative Programming: Requirements during the Semester

Big HomeWork (BHW)

@ In both programming language (Prolog, SML)
@ Work independently!
@ Programs should be efficient (time limit!), well documented (with comments)

@ Developer documentation: 5-10 pages, for both programming languages (TXT, TeX/LaTeX,
HTML, PDF, PS; BUT NOT DOC or RTF)

@ Announced in the 6th week, on the homepage, with downloadable frame-program
@ Deadline in the 12th week; submission in electronic format (see homepage)

@ The test-cases handed out and the test cases used at scoring are not the same, but of similar
difficulty

@ The programs which perfectly solve all the test cases, participate in a ladder competition
(winners get additional points)
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Declarative Programming: Requirements during the Semester (cont.)

Small HomeWork (SHW)
@ 2-3 exercises from both Prolog and from SML
@ Handing in: electronically (see homepage)
@ Optional, but very much recommended

@ Every good solution earns 1 additional point

Using the Web Exercising system
@ Optional, but indispensable for the successful midterm-test and exam!

@ Embedded in the ETS system (see homepage)
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Declarative Programming: Requirements during the Semester (cont.)

Big HomeWork (cont.)

@ optional, but very much recommended!

@ Can also be handed in if solved only in one programming language

@ Until the deadline homeworks can be handed in several times, only the last one is scored
@ Scoring (for both languages):

@ Each of the 10 test cases, which run correctly and within the time limit earns 0.5 points/test
case, max 5. points in total, if at least 4 cases are correct

@ for the documentation, the readability of the code and comments max. 2,5 points

@ That means max. 7,5 total points/language

@ The weight of the BHW in the final mark: 15% (15 points from 100 points)
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Declarative Programming: Requirements during the Semester (cont.)

Midterm-test, Supplementary Midterm-test (MTT, SMTT, SSMTT)
@ The midterm-test is mandatory, closed book test!

@ Rule of 40% (for the pass, minimum 40%/language has to be obtained).
Exception: those students who have already obtained a signature.

@ The MTT is in the 7th-10th week, the SMTT is in the last week of the semester

@ A single opportunity for SSMTT (in reasonable case) will be given in the first three weeks of the
exam-period

@ The material covered by the MTT is the first two blocks (1th-7th week)
@ The material covered by the SMTT and. the SSMTT is the same as that of the MTT
@ The test weights 15% (15 points from 100 points ) in the final mark

@ |f more tests are written the highest score is valid
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Declarative Programming: Exam

Exam

@ Those students can sign in to the exam, who have already got a signature in the given semester,
or up to 4 semesters before

@ The exam is oral, with preparation in writing
@ Prolog, SML: Several smaller tests (program-coding, -analyzing) for 2x35 points

@ The final points obtained are the sum of the following: the max. 70 points got in the exam, plus

the points got in the present semester: for MTT: max. 15 points, for BHW: max. 15 points, plus DECLARATIVE AND IMPERATIVE PROGRAMMING

the additional points (SHW, ladder-competition)
@ We do not accept points from earlier semesters!
@ The exam is closed-book exam, but it is possible to ask for some help
@ \We check the "authenticity" of the BHW and MTT
@ Rule of 40% (for the pass minimum 40%/language have to be obtained)

@ Earlier exam questions are available on homepage
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Classification of Programming Languages Imperative and Declarative Programming Languages

@ Imperative Program

@ Imperative style, using commands
P ing| —styl o ) .
rogramming fanguages — styles @ Variables: the value of a variable can be modified

@ example in C:
int pow(int a, int n) { // pow(a,n) = a”™n
// Llet p be 1!

. . int p=1;
Imperative Declarative while (n > 0) { // Repeat until n>0 :
Fortran ///////// \\\\\\\\\\ n = n-1; // Decrease n by 11!
Algol . p = p*a; } // Multiply p by a!
c Functional Languages Logic Languages return p; } 7/ Return the value of p
C++ LIsP QL @ Declarative Program
ML Prolog _ i .
@
CLP languages Declarative style, equations and statements

@ Variable: has a single value, unknown at program writing time
@ SML example :
fun pow(a, n) =
ifn>0 G Ifn>0%
then a*pow(a,n-1) (* then a™n = a*a”™(n-1) *)
else 1 (* else a™n =1 %)
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Declarative Programming in Imperative Language

@ |t is possible to program in C in a declarative way

@ If we do not use: assignments, loops, jumps, etc.,
@ One can use: (recursive) functions, if-then-else

@ The powd is a declarative version of the pow function:

/* powd(a,n) = a™n */ int powd(int a, int n) {

if (n>0) /* 1fn>0%*

return a*powd(a,n-1); /* then a™n = a*a”~(n-1) */
else

return 1; /* else a™n =1 */

}

@ The (above type of) recursion is expensive, requires non-constant memory :-(.
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Right Recursive Functions

@ |s it possible to write a right recursive code for the exponentiation (pow(a,n)) task?

@ The problem is that when "coming out" from the recursion we are not able to do anything
more, so the result has to be available inside the last call.

@ The solution: define an auxiliary function, which has an additional argument, a so called
accumulator.

@ Right recursive implementation of pow(a,n):

/* Auxiliary function: powa(a, n, p) = p*a™n */
int powa(int a,int n, int p) {
if (n>0)
return powa(a, n-1, p*a);
else
return p;

}

int powr(int a, int n){
return powa(a, n, 1);

}
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Efficient Declarative Programming

@ The recursion can be efficiently implemented under certain conditions

@ Example: Decide, if an a natural number is a power of a number b:
/* ispow(a,b) = 1 <=> exits i, such that b’ = a. Precondition: a,b > 0 */

int ispow(int a, int b) {
/* again: */

if (a==1) return 1;
else if (a%b == 0) return ispow(asb, b); /* a = a/b; goto again; */
else return 0;
¥
@ Here the recursive call can be implemented as the assignment and jump shown in the
comment!
@ This can be done, because after the return from the recursive call, we immediately exit the
function call.

@ This kind of function invocation is called right recursion or terminal recursion

@ The Gnu C compiler with a sufficient optimization level (gcc -02) generates the same code
from the recursive definition as from the non-recursive one!
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Cékla: A Declarative part of the C programming language

@ Limitations:
@ Types: only int
@ Commands: if-then-else, return, block
@ Condition part: ( (exp) (compare-op) (exp))

@ (compare-op):< | > | == | \= | >= | <=
@ Expressions: built from variables and integers using binary operators and function calls
@ (arithmetical-op): + | - | * 1 7 1 % |

@ The Cékla compiler is available on the homepage
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The Syntax of the Cékla Language

@ the syntax uses the so called. DCG (Definite Clause Grammar) symbol:

@ terminal symbol: [terminal]
@ non-terminal: non_terminal
@ repetition (0, 1, or more repetition, is not in DCG): (to be repeated).. .

@ The syntax of program

program --> function_definition ...
function_definition --> head, block.
head --> type, identifier, [’(C], formal_args, [*)’]-
type --> [int].
formal_args --> formal_arg, ([","], formal_arg)... ; [1-
formal_arg --> type, identifier.
block --> [’{’]1, declaration..., statement..., [*}’].
declaration --> type, declaration_elem, declaration_elem..., [7;”].-
declaration_elem --> identifier, [’="], expression.
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1st Small Homework

@ The sequence of symbols, which is equal to an other sequence of symbols written twice in a row,
is called a stutterer. More precisely:

@ a sequence of symbols is a stutterer if its length is even (2n) and the first n elements are the
same as the last n elements

@ Examples: adogadog, 10311031

@ A program is to be written in the Cékla language which solves the following problem:

@ the main function should be: stutterer(a) = b meanomg: b is the smallest natural number
such that the a natural number written in base b is a stutterer.

@ Examples:
@ stutterer(4) = 3
@ stutterer(10) = 2
@ stutterer(6) = 5
@ stutterer(8) = 3
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Syntax of Cékla, Continued
@ Syntax of Commands
statement --> [if], test, statement, optional_else_part
; block
; [return], expression, [7;”]
; 7571
optional_else_part --> [else], statement ; []-
test --> [7C1, expression, comparison_op, expression, [?)’].
@ Syntax of Expressions
expression --> term, (additive_op, term)... .
term --> factor, (multiplicative_op, factor)...
factor --> identifier
; identifier, [7(C’], actual_args, [*)’]
; constant
; [’C1. expression, [*)’]-
constant --> integer.
actual_args --> expression, ([”,”], expression)... ; [1-
comparison_op --> <15 0> 0=="1: [\="1; ['>71 5 ['<="1.
additive_op --> ’+’1;:; [*-°1-
multiplicative _op --> [’*°1: 077’1 ; [’%"]-
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A Somewhat More Complicated Cékla Program
@ The task: Convert a decimal number num— which is between 0 and 1023 — to a 10 digit
decimal number containing only digits 0 and 1, so that when this sequence of digits is
interpreted as a binary number, its value is num. Eg. bin(5) = 101, bin(37) = 100101.
@ Solution in (imperative) C and in Cékla:
int bin(int num) { int bina(int num,
int bp = 512; int bp,
int dp = 1000000000; int dp,
int bin = 0; int bin) {
while (bp > 0) { if (bp > 0) {
ifT (num >= bp) { if (num >= bp)
num = num-bp; return bina(num-bp,bp/2,dp/10,bin+dp);
bin = bin+dp; else
3} return bina(num, bp/2,dp/10,bin);
bp = bp 7 2; b
dp = dp 7/ 10; it (num > 0)
3} return -1;
if (hum > 0) else
return -1; return bin;
else 3}
return bin; int bind(int num) {
} return bina(num, 512, 1000000000,0); }
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Declarative Programming Languages — Lessons Learned from Cékla

@ What have we lost?

@ the mutable variables (variables whose value can be changed),
@ the assignment, loop, etc. statements
@ in general: a changeable state

@ How can we handle state in a declarative way?

@ the state can be stored in the parameters of the (auxiliary) functions,
@ the change of the state (or keeping the state unchanged) has to be explicit!

@ What have we won?

@ Stateless Semantics: the meaning of a language element does not depend on a state
@ Referential transparency — eg. if f(x) = 22, then f(a) substitutable with a2.
@ Single assignment — parallel execution made easy.

@ The declarative programs are decomposable:
@ The parts of the program can be written, tested and verified independently
@ |t is easy to make deductions regarding the program eg. proving its correctness.
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Declarative Programming — Why do We Teach it?

@ New, high-level programming elements
@ recursion
@ pattern matching
@ backtrack
@ New style of thinking
@ decomposable programs: parts of a program (relations, functions) have independent meaning
@ verifiable programs: the code and the meaning of a program can be compared.
@ New application areas
@ symbolic application
@ tasks requiring deduction
@ high reliability software systems
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Declarative Programming Languages — Motto

@ WHAT rather than HOW: The program describes the task to be solved (WHAT to solve), rather
than the exact steps of solution process (HOW to solve).

@ In practice both aspects have to be taken care of — dual semantics:

@ Declarative semantics — What (what kind of task) does the program solve;
@ Procedural semantics — How does the program solve it.
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An Example dialog with a 50-line Prolog program

(Translation from Hungarian.)

| ?- dialog.

|: 1 am a Hungarian lad.
Under st ood

|: Who am 1?

Hungari an | ad

| :Who is Péter?

| do not know.

| : Péter is student.
Under st ood

| : Péter is smart student.
Under st ood

|: Who is Péter?

st udent

smart student

|: I am happy.
Under st ood

| You are a Prolog program.
Under st ood

|: Who am 1?

Hungari an | ad

Happy

|: You are clever.
Under st ood

| You are the center of the world.
Under st ood

| : Who are You?

a Prol og program

C ever

the center of the world

| : Really?

I do not understand

|: 1 am fed up with You .

So am | .
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INTRODUCTION TO LOGIC PROGRAMMING

LP-27

The Outline of the LP Part of the Course

@ Block 1: The basics of Prolog programming langauge (6 lectures)
@ Logic background
@ Syntax
@ Execution mechanism

@ Block 2: Prolog programming methods (6 lectures)

@ The most important built-in procedures
@ More advanced language and system elements

@ Outlook: New directions in logic programming (1 lecture)
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The Basic Idea of Logic Programming

@ Logic Programming (LP):

@ Programming using mathematical logic
@ a logic program is a set of logic statements
@ the execution of a logic program is a deductive process

@ But: the deduction in (first order) logic requires traversing a huge search space
@ | et us restrict the language of the logic
@ Select a simple deduction algorithm, which can be followed by humans

@ The most widespread implementation of LP is the Prolog language: Programming in logic

@ a severely restricted sublanguage of the first order predicate logic, the so called definite or
Horn-clause language

@ Execution mechanism: pattern matching directed procedure invocation with
backtracking search.
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Short Historical Overview of Prolog/LP

60s Early theorem proving programs

1970-72 The theoretical basis of logic programming (R A Kowalski)
1972 The first Prolog interpreter (A Colmerauer)

1975 The second Prolog interpreter (P Szeredi)

1977 The first Prolog compiler (D H D Warren)

1977-79 Several trial Prolog applications in Hungary

1981 The Japanese 5th generation project chooses logic
programming
1982 The Hungarian MProlog is one of the first commercial Prolog

implementations
1983 A new compiler model and abstract Prolog machine (WAM)
appears (D H D Warren)
1986 The beginning of the Prolog standardization
1987-89 New logic programming languages (CLP, Godel stb.)
1990-... Prolog appears on parallel computers
Highly-efficient Prolog compilers
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Information about Logic Programming

@ Implementations of Prolog:

@ SWI Prolog: http://www.swi-prolog.org/
@ SICStus Prolog: http://www.sics.se/sicstus
@ GNU Prolog: http://pauillac.inria.fr/~diaz/gnu-prolog/

@ Network information sources:

@ The WWW Virtual Library: Logic Programming:
http://www._afm.sbu.ac.uk/logic-prog

@ CMU Prolog Repository:
(within http://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/lang/prolog/)
@ Main page: 0.html
@ Prolog FAQ: fag/prolog.faq
@ Prolog Resource Guide: fag/prg_1.faq, fag/prg_2.faq
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English Textbooks on Prolog

@ Logic, Programming and Prolog, 2nd Ed., by UIf Nilsson and Jan Maluszynski, Previously
published by John Wiley & Sons Ltd. (1995)

Downloadable as a pdf file fromht t p: / / www. i da. | i u. se/ ~ul fni /| pp

@ Prolog Programming for Artificial Intelligence, 3rd Ed., Ivan Bratko, Longman, Paperback -
March 2000

@ The Art of PROLOG: Advanced Programming Techniques, Leon Sterling, Ehud Shapiro, The
MIT Press, Paperback - April 1994

@ Programming in PROLOG: Using the 1SO Standard, C.S. Mellish, W.F. Clocksin,
Springer-Verlag Berlin, Paperback - July 2003
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EMPTY

This page is intensionally left blank
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Our first Prolog program: checking if a number is a power of another

@ A simple example in Cékla and Prolog:
/* ispow(a,b) = 1 <=> exits i, such that b’ = a. Precondition: a,b > 0 */

int ispow(int num, int base) { ispow(Num, Base) :-

if (num == 1) ¢ Num =:= 1
return 1; ->  true
else if (num%base == 0) ; Num rem Base =:= 0,
return ispow(num/base, base); Numl is Num//Base,
else ispow(Numl, Base)
return 0; )-
¥

@ ispow is a Prolog predicate, that is a procedure (function) returning a Boolean value.
@ The procedure consists of a single clause, of form Head: -Body.
@ The head contains the parameters Num and Base which are variables (written in capitals!)

@ The body consists of a single goal which is a conditional structure:
if Cond then ThenCode else ElseCode = ( Cond -> ThenCode ; ElseCode )

@ The “true”, “A =:= B” and “A is B” structures are calls of built-in predicates.
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Some Built-In Predicates

@ Unification: X = Y: The x és Y symbolic expressions can be brought to the same form, by
instantiating variables (and carries out these instantiations).

@ Arithmetic predicates
@ X is Exp: The arithmetic expression Exp is evaluated and its value is unified with X.
@ Expl<Exp2, Expl=<Exp2, Expl>Exp2, Expl>=Exp2, Expl=:=Exp2, Expl=\=Exp2:
The values of arithmetic expressions Exp1 and Exp2 are in the given relation with each other
=:=means arithmetic equality, =\= means arithmetic inequality).
@ If any of Exp, Expl or Exp2 isnota ground (variable-free) arithmetic expressions =-error.
@ the most important arithmetic operators +, -, *, /, rem, // (integer-div)
@ Output predicates
@ write(X): The Prolog expression X is written out (displayed on the screen).
@ nI: A new line is written out.
@ Other predicates
@ true, fail: Always succeeds vs. always fails.
@ trace, notrace: Turns (exhaustive) tracing on/off.
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Writing General (non Boole-valued) Functions in Prolog

@ Example: Calculating the power of a natural number in Cékla and Prolog:

/* powd(a,n) = a™n */ /* powd(A, N, P): AN = P. */

int powd(int a, int n) { powd(A, N, P) :-
if (n>0) ( N>O0
return a*powd(a,n-1); -> N1 is N-1,
powd(A, N1, P1),
P is A*P1
else H P=1
return 1; )-
}

| ?- powd(2, 8, P).
P = 256 ?

@ The predicate powd with 3 arguments corresponds to thepowd function with 2 arguments.

@ The two arguments of the function correspond to the first two arguments of the predicate, which
are input i.e. instantiated arguments.

@ The result of the function is the last, output argument of the predicate, which is usually an
uninstantiated variable.
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Built-In Predicates for Program Development

@ consult(File) or [File]: Reads the program from the File and stores it in interpreted
format. (if File = user = read from the terminal)

@ listingor listing(Predicate): Lists all interpreted predicates, or all interpreted predicates
with the given name.

@ compile(File): Reads the program from the File and compiles it.
@ The compiled format is faster, but cannot be listed, and tracing is slightly less accurate.

@ halt: Exit the Prolog system.

> sicstus

SICStus 3.11.0 (x86-1inux-glibc2.3): Mn Oct 20 15:59: 37 CEST 2003
| ?- consult(ispow).

% consul ted /home/ user/ispow. pl in nodul e user, 0 nsec 376 bytes
yes

| ?- ispow(8, 3).

no

| ?- ispow(8, 2).

yes

| ?- listing(ispow).

(...)

ye

| ?- halt.

>
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Predicates with Multiple Clauses

@ The conditional structure is not a basic element of the Prolog language (it was not there in the
first Prologs)

@ Instead a conditional a predicate with two, mutually exclusive clauses can be used:

/* powd(A, N, P): AN = P. */ powd(A, N, P) :-
powd2(A, N, P) :-

( N>O N > 0,
-> N1 is N-1, N1 is N-1,
powd(A, N1, P1), powd2(A, N1, P1),
P is A*P1 P is A*P1.
H P=1 powd2(A, N, 1) :- N =< 0.

@ Ifa predicaie has multiple clauses, Prolog tries all of them :

@ If the 2nd parameter of pow2 (N) is positive, then the first clause is used,

@ otherwise (i.e. if N =< 0) the second one.
@ If the second clause of powd2 is: powd(A,0,1), then a call with a negative exponent fails.
@ In general the clauses need not be exclusive: a single question can lead to multiple answers:

equation_root(A, B, C, X) :- X is (-B + sqrt(B*B-4*A*C))/(2*A).
equation_root(A, B, C, X) :- X is (-B - sqrt(B*B-4*A*C))/(2*A).
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Predicates with Multiple Answers — Family Relationships

@ Data

A child—parent relation, eg. family relations in the family of King Stephen I, the first king of

Hungary:
child | parent
Imre | Istvan

Imre Gizella

Istvan | Géza

Istvan | Sarolta

Gizella | Civakodé Henrik
Gizella | Burgundi Gizella

@ The Exercise:

We have to define the grandchild—grandparent relation, i.e. write a program which finds the

grandparents of a given person.
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Data Structures in Declarative Languages — Example

@ The binary tree data structure is

@ either a node (node) which joins two subtrees (left, right) into a single tree

@ or a leaf (1eaf) which contains an integer

@ Let us define binary tree structures in different languages:

% Decl aration of a structure in C
enum treetype Node, Leaf; struct tree {
enum treetype type;
union {
struct { struct tree *left;
struct tree *right;

} node;
struct { int value;
} leaf;
¥ u;
}:

% Data type declaration in SM.
datatype Tree =
Node of Tree * Tree
| Leaf of int

% Data type description in Prolog
- type tree --->

node(tree, tree)
| leaf(int).
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The Grandparent Problem — Prolog Solution

% parent(C, P):C s parent P

parent(’Imre”, “Istvan’). % Who are Imre’ s grandparents?
parent(’Imre’, *Gizella”). | ?- grandparent(’Imre”, GP).
parent(’ Istvan’, ’Géza’). GP = ’Géza” ? ;
parent(’Istvan’, *Sarolt”). GP = ’Sarolt” ? ;
parent(’Gizella’, GP = ’Civakoddé Henrik” ? ;
>Civakodo6 Henrik?). GP = ”Burgundi Gizella” ? ; no

parent(’Gizella’,
*Burgundi Gizella”).

% Who are Géza' s grandchil ds?

] ?- nagyszuloje(GC, ’Géza’).

GC = “Imre” ? ; no

% Child’s grandparent is Grandparent.

grandparent(Child, Grandparents) :-
parent(Child, Parents),
parent(Parents, Grandparents).
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LP-40

Calculating the Sum of a Binary Tree

@ To calculate the sum of the leaves of a binary tree:

@ if the tree is a node, add the sums of the two subtrees
@ if the tree is a leaf, return the integer in the leaf

% C function (declarative)
int sum_tree(struct tree *tree) {
switch(tree->type) {

% Prol og procedure (predicate)
sum_tree(leaf(Value), Value).
sum_tree(node(Left,Right), S) :-

case Leaf: sum_tree(Left, S1),
return tree->u.leaf.value; sum_tree(Right, S2),
case Node: S is S1+S2.
return

sum_tree(tree->u.node.left) +
sum_tree(tree->u.node.right);

}
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LP-41 LP-42

Sum of Binary Trees Peano Arithmetic — Addition

@ Prolog sample run: @ We can define the addition for natural numbers using Peano axioms if the numbers are built by

% sicstus -f repeated application of the s(x) ,,successor” function:

SICStus 3.10.0 (x86-linux-glibc2.1): Tue Dec 17 15:12:52 CET 2002 1 = s(0), 2 = s(s(0)), 3 = s(s(s(0))), --- (Peano representation).
Licensed to BUTE DP course
| ?- consult(tree). % plus(X, Y, Z): The sum of X and Y is Z (X,Y,Z are in Peano representation).
% consulting /home/szeredi/peldak/tree.pl... plus(0, X, X). % 0+X = X.
% consulted /home/szeredi/peldak/tree_pl in module user, O msec 704 bytes plus(s(X). Y, s(2)) :-
yes plus(X, Y, 2). % s(X)+Y = s(X+Y).
| ?- sum_tree(node(leaf(5),
node(leaf(3), leaf(2))), Sum).
Sum = 10 ? ;

no | ?- plus(s(0), s(s(0)), 2). Z = s(s(s(@))) ? ; no % 1+2 = 3
| ?- sum_tree(Tree, 10).

@ The plus predicate can be used in multiple directions:

Tree = leaf(10) ? : | ?- plus(s(0), Y, s(s(s(0))))- Y =s(s()) ? ; no % 3-1 =2

. A - -

; Ing?nt;gt:gn 3;:0;4|n argument 2 of is/2 | 2= plus(X, Y, s(s(0))). X =0, Y =s(s) ? ; % 2 = 042

ig_hé,t =t X=s(), Y=5(0)?; % 2=1+1

% . X=s((), Y=07?; % 2=2+0

no
@ The cause of the error: the built-in arithmetic is one-way: the 10 is S1+S2 call causes an error! I -
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LP-43 LP-44
Building Trees with a Given Sum The Data Structure of Prolog, the Notion of Term
@ Building a tree with a given sum, using Peano arithmetic: .
@ constant (atomic)
sum_tree(leaf(Value), Value). _ i .
sum_tree(node(Left, Right), S) :- @ number: numeric constant (number) — integer or float, eg. 1, -2.3, 3.0e10
plus(Si, s2, 9), @ name: symbolic constant (atom), eg. *Istvan®, ispow, +, -, <, sum_tree

S1 \= 0, S2 \=0, % X \=Y built-in procedure, meaning
% X and Y cannot be unified
% 0 excluded, to avoid oo many solutions.

@ compound or structure (compound)

sum_tree(Left, S1),
sum_tree(Right, S2).

the running of the procedure:

| ?- sum_tree(Tree, s(s(s(0)))).

Tree = leaf(s(s(s(0)))) ? ; % 3
Tree = node(leaf(s(0)),leaf(s(s(0)))) ? ; % (1+2)
Tree = node(leaf(s(0)),node(leaf(s(0)),leaf(s(0)))) ? ; % (1+(1+1))
Tree = node(leaf(s(s(0))),leaf(s(0))) ? ; % (2+1)
Tree = node(node(leaf(s(0)),leaf(s(0))),leaf(s(0))) ? ; % ((1+1)+1)
no
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@ so called canonical form: ( name of structure ) ((arg; ), ...)
@ the ( name of structure ) is an atom, the (arg; ) arguments are arbitrary Prolog terms
@ examples: leaf(1), person(william,smith,2003,1,22), <(X,Y), is(X, +(Y,1))
@ syntactical "sweeteners”, ie. operators: X is Y+1 = is(X, +(Y,1))
@ Variable (var)

@ eg. X, Parent, X2, _valt, _, _123

@ The variable is initially uninstantiated, ie. it has no value, it can be instantiated to an arbitrary
Prolog term (including another variable), in the process of unification (pattern matching)
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