FUNCTIONAL PROGRAMMING, PART |

FP-1-2

Contents

Contents of the first part

@ Introduction
@ Abstraction with functions and processes

@ Elements of the Program
@ Functions and the Processes they generate
@ Higher-Order Functions

@ Abstraction with data

@ The idea of data-abstraction

@ Hierarchical data structures

@ Multiple Representations for Abstract Data
@ Polymorphic and generic operations

Bibliography: [SICP] Abelson, Sussman & Sussmatructure and Interpretation of Computer
Programs,The MIT Press, 1996

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1-3

History of Functional Programming

@ LISP (LISt Processing), late 1950s, MIT, US, John McCarthy; tgpe

@ for proving some logic expressions (recursive equatidmm)dling symbolic expressions
@ ML (Meta Language), Edinburgh, GB, mid 1970s; strongly tyjgoke inference
@ Schemebased on LISP, 1975, MIT, US; typeless
@ SML (Standard ML), late 1980s, strongly typed
@ Miranda, 1985;GB; strongly typed, non-strict semantics, pure fiamal, lazy evaluation
@ Erlang, late 80s, Ericsson, SE; concurrency, distribution and falérance, typeless
@ Haskell,similar to Miranda, 1990s, US; static polymorphic typingpe classes, monadic I/O
@ Common LISPL994, ANSI standard,;
@ Clean,similar to Miranda & Haskell 1994, Nijmegen, NL; uniquené&gse system (for 1/O)
@ Mercury,based on Prolog, 1995, Melbourne, AU, functional & otheeagtons to Prolog
@ OCaml,based on ML, 1996, INRIA, FR; object-oriented & other extens to ML
@ Alice,based on ML, 2003, Saarbrtucken, DE; optional lazy evalnafigures, concurrency
@ Hume,2003, Edinburgh & St. Andrews, UK; typed, resource-limited

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-I-4

Functional Programming

What is common in functional languages?

@ Recursive functions
@ Recursive data structures

@ Handling of functions as data

In the following weeks:

@ We will discusscomputing processemddatahandled by them
@ QOur programs - the rule systems describing the processdkbemritten in SML
@ We will use the Moscow ML compiler & interpreter

@ What we learn about abstraction, modelling and prograncttra will be useful with other
programming languages as well

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

ABSTRACTIONS WITH FUNCTIONS (PROCESSES)

FP-1-6

Program elements

Programming Language: more than just a means for instgiattcomputer to perform tasks.
Framework within which we organize our ideas about process®vides ways for combining simpl
ideas to form more complex ideas.

@ primitive expressions, which represent the simplestiestthe language is concerned with,
@ means of combination, by which compound elements are lvaith Simpler ones, and

@ means of abstraction, by which compound elements can bechantemanipulated as units.
Expressions in SML

@ atomic: names and constants: apple ,486, 2.0 , "text" ,#"A"true

@ compound: pl482+pear ,2.3-0.3 ,"te""xt" ,0p+(482,4,plum) ,#"'A"< #'a"
How we combine:

@ operators (operator, function)
@ operand (formal parameter)
@ argument (actual parameter)

@ recursion

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1-7

Examples for using SML

The SML interpreter works in a so callegiad-eval-printloop. The evaluation starts when™'and

ENTERS pressed.

Moscow ML version 2.00 (June 2000)
Enter ‘quit();’ to quit.

- 486;

> val it = 486 : int
- 2.3-0.3;

> val it = 2.0 : real
- "te"AUxt";

> val it = "text" : string
- op+(482,4);

> val it = 486 : int
- #'A"< #'a"

> val it = true : bool
- val it = 486;

> val it = 486 : int

Each expression is actuallyalue declarationif we don't specify a name, SML binds the naihe
to the value.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1-8

Name giving in the global environment

With value declarationwe bind a name to a value:

- val size = 2;
> val size = 2 : int

- 5*size;

> val it = 10 : int
-val ||| = 3;
>val ||| = 3 : int
- ||| * size;

> val it = 6 : int
Remark:| and* are adhesive symbols, so there must be a space between them.
A name can be:

@ : alphanumeric, which consists of the small and capita¢teithumbers the and the symbols
and starts with a letter

@ consists of only symbols

Name giving is the simplest abstraction tool in programniamguages.
Thename—valugairs are stored in the ,memory” of SML, the so called globalinment. Later
we’ll see that there are local environments as well.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1-9

Construction rules of names

@ Alphanumeric name: sequence of small letters, capitalspaus, the apostrophe)and the
underbar () symbols, starting with letter or apostrophe.

@ ExamplesagentSmith Agent_3 Smith agent'smith ’agent
@ Names starting with an apostrophe denote type-variabbesléser).

@ Symbol-name: sequence of the followiaghesivesymbols:
l % & $#+-/:<=>2@\~"'"|*
@ Examples++ <> ||| ## |=|

@ The following reserved symbols have special roles:

()T {r. .

@ Reserved words (can’t be used as names):

abstype and andalso as case do datatype else end eqtype excep tion
fn fun functor handle if in include infix infixr let local non fix
of op open orelse raise rec sharing sig signature struct stru cture
then type val where with withtype while : :: > | = == > #

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1-10

Atomic data types

Type name Description Library
int signed integer | Int
real rational (real) Real
char character Char
bool boolean Bool
string string String
word unsigned int Word
word8 8 bit unsigned int Word8

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1-11

Built-in operators and their precedence

In this tablewor di nt , numésnunt xt stand for the followings:
wor di nt =int , word, word8
num=int ,real ,word, word8
nunt xt =int ,real ,word,word8, char , string

Prec.| Operator Type Result Exception
7 * num * num -> num product Overflow
/ real * real -> real quotient Div , Overflow
div, mod wordi nt * wordint -> wordint quotient, remainderDiv , Overflow
guot, rem int * int -> int remainder, quotient Div , Overflow
6 +, - num * num -> num sum, difference Overflow
A string * string -> string concatenated stringSize
5 > '‘a * 'a list -> ’a list list with added element
@ 'a list * 'a list -> 'a list concatenated list
4 = <> "a * "a -> bool equal, not equal
<, <= numt xt * nunt xt -> bool less than, less or equal
>, >= nunt xt * nunt xt -> bool greater than, greater or equal
3 = '‘a ref * 'a -> unit assignment
0 (b ->'c) * (a -> 'b)-> (a -> 'C) function composition
0 before 'a*’b -> 'a left argument

div —oo, quot rounds towards zero. Resultsdif andquot , modandrem are equal only if their
two operands have the same sign.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1-12

Constants

@ Signed integer constant (int)

Examples: 0 ~0 4 ~04 999999 OxFFFF ~Ox1ff
Counter-examples0.0 ~0.0 4.0 1E0 -317 OXFFFF -Ox1ff

@ Rational constant (real)

Examples: 0.7 ~0.7 3.32E5 3E~7 ~3E~7 3e~7 ~3e~7
Counter-examples23 .3 4.E5 1E2.0 1E+7 1E-7

@ Unsigned integer constant (word)

Examples: OwO Ow4 0w999999 OwxFFFF Owx1ff
Counter-examplesOw0.0 ~0w4 -0w4 OwlEOQ OWXFFFF OWXFFFF

@ Character constant (char): thesymbol and a one-character string (see later).
Examples: #'a" #\n" #'\Z" #N\255" #\M
Counter-examples# "a" #c # #a’

@ Boolean constant (bool): only two constants

Examples: true false
Counter-examplesTRUE False 0 1

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1-13

Constants, escape sequences

@ String constant: zero or more printable characters, spascape-sequencesginning with the
\ symbol; between double quoté's)(

@ Escape-sequences

\a
\b
\t
\n
\v
\f
\r
\"c

\ ddd

\U XXXX
\ll

\\

\ fooe

Bell (BEL, ASCII 7).

Backspace (BS, ASCII 8).

Horizontal tabulator (HT, ASCII 9).

Newline (LF, ASCII 10).

Vertical tabulator (VT, ASCII 11).

Form feed (FF, ASCII 12).

Carriage-return (CR, ASCII 13).

Control-character, whei@l < c <95 (@ ...), and the ASCII code a&f cis
smaller by 64 than the ASCII code of

The character having ASCII codkeld (dddis decimal).

The character having ASCII code (xxis hexadecimal).

Double quotes”().

Backslash\().

Ignored characters$ - - - f zero or more formatting characters (space, HT, LF, VT,
FF, CR) symbools.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-I-14

Evaluating compund expressions

A compund expression is evaluated in two steps (so calegr or applicative
evaluatior):

1. First, the operator is evaluated (operator or functiorgntthe operands (arguments),

2. Second, the operator function is called with the arguments

Note that this startegy is simple because it is defined byrsamu

Evaluation rules of atomic expressions:

1. Values of constants are the values which they stand for,
2. Built in operators (functions) activate the correspondiagive operations

3. Values of names are the values which they are bound in thertugnvironment

Remark: 2. is only a special case of 3.

Példa:
(2+4*6)*(3+5+7) = op*(op+(2,0p*(4,6)),0p+(0p+(3,5),7))
Expressions can be represented as trees, (see Logic Progrgmn

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

Anonymous functions, lambda notation, defining functions

FP-1-15

Anonymous function with\ notation: ex(fn x => x*X)
Applying an anonymous function: gfn x => x*x) 2

@ Thefn symbolis calledambda
@ X is the formal parameter of the function (local name).
@ x*x is the body of the function.

@ 2 is the argument (actual parameter) of the function.
Giving name to a function (function declaration):

val square = fn x => x * X

val sumOfSquares = fn (X, y) => square x + square y
val f = fn a => sumOfSquares(a+l, a*2)

Functions defined by the user can be used the same way agduittetions.

Higher-level functional programming. BME VIK, Autumn 2006

(Functional programming)

FP-1-16

Further examples on defining functions in SML

Function to produce the successive elements of the 2 bit Inlagadistance code.

@ We can define the function with a table: 001 fn 00 => 01
01|11 | 01 => 11
11|10 | 11 => 10
10|00 | 10 => 00

@ Variants (,clauses”): one variant for each case.

@ Thefn (read:lambdg constructs an (anonymousinction expressian

@ Some uses of the function:
@ (fn 00 =>01]01 =>11] 11 => 10 | 10 => 00) 10
@ (fn 00 =>01]01 =>11] 11 => 10 | 10 => 00) 11
@ (fn 00 => 01 | 01 => 11 | 11 => 10 | 10 => 00) 111

@ Pattern-match: one-way unification

@ Easily understandable, but not robust: the function isig@griot defined on every element of the
domain)

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1-17

Further examples on defining functions in SML

Incrementing integers moduto(ex.n = 5)

@ A function is usually defined with an algorithm, not a tabteavoid too much variants.
@fni = (i + 1) mod 5
@ | isthe formal parameter, twound variable

@ A few uses:

@({fni=>(@{+1) mod5) 2
@(fni=>(@{+ 1) mod>5) 4
@(fni=(@(+1 mod5) 3.0 — Error!

@ This function could be defined with two clauses:
fnd=>0]i=>1i+1

@ The order is important: SML (unlike Prolog) uses only thetfinsitching clause!

@ The second version of the function is not robust. Which ormetter?

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1-18
Binding a name to a function value (declaring function vajue

@ \We have seen that names can be bound to function values tleevgayras to any other values.

@ val nextCode = fn 00 => 01 | 01 => 11 | 11 => 10 | 10 => 00
@val incMod = fh 4 =>0]i=>1+1

@ \With syntactic sweetenefun):

@ fun nextCode 00 = 01
| nextCode 01 = 11
| nextCode 11 = 10
| nextCode 10 = 00

@ fun incMod 4 = 0
| incMod | =i + 1
@ Applying them on some arguments

@ nextCode 01
@ incMod 4

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1-19
Head comment

Let’s write declarativdhead commerfor all our functions!

@ (* nextCode cc = the next element of the 2-bit 1-Hamming dista

cyclic code (subsequent to cc)
PRE: cc ¢ {00, 01, 11, 10}

nce

*
)
fun nextCode 00 = 01
| nextCode 01 = 11
| nextCode 11 = 10
| nextCode 10 = 00

@ PRE= precondition

@ PRE: cc € {00, 01, 11, 10} means: th@extCode function’scc argument must be i
the se{00, 01, 11, 10} , else the result is undefined.

@ (* incMod i = (i+1) modulo 5
PRE: 5 >i >0
*)
fun incMod | = (i+1) mod 5

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1-20
Function as a value

@ Functions are ,first-class citizens” in a functional langeathey can freely be passed to other
functions, returned as the result of functions, stored ta dauctures, and so on.

@ The type of a function value ist — 3, wherea is the type of the argument,is the type of
the result.
@ The function itself is a valugunction value
@ Important: the function value is NOT the result of tyagplicationof the function!
@ Examples:
@ sin (type:real — real)
@ round (type:real — int)
@ o (function composition; type(6 —) * (o — 3)) — (o — 7))
@ Examples for function application:

@ round 5.4 = 5, so the result of the application of the function is of type
@ round osin (type:real — int)
@ (round osin)1.0 = 1 (type:int)

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1-21

Functions with two or more arguments

@ Functions always have only one argument, but:

1. We can use compound arguments: pairs, records, list, etc.
@ ex. f(1,2) is the f function applied to theair (1,2)
@ ex. f[1,2,3] is the f function applied to thést [1, 2, 3]

2. OR we can apply the function in several successive stepgtorants:
ex.f12=(f1)2means that

@ in the first step, we apply to 1, which results in a function
@ in the second step, we apply the result functigri) to 2 and we get the result @ff 1) 2

@ In f 12, fis apartially applicablefunction

@ |tis the programmer’s choice to write a function with compdwargument, or as a partially

applicable function. The difference is only in the syntgk((,2) <=> f 12). As we will see
later, partially applicable functions are more flexiblesytltan be applied on some subset of the

arguments.
@ Infix notation:z @ y = the application of the functiom to the pair(z, y) as argument.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

ABSTRACTION WITH FUNCTIONS AND PROCESSES

FP-1-23

Application of functions in SML

@ In SML the function namé and its argumeng can be any expressions, which must be separe
f e,orf(e) ,or(He ,or(f)(e)

@ Separator: zero, one or md@matting charactergL/, \t, \n etc.). No formatting character can
used only if using parentheses (i.e. before (" or after a),)”

@ Important: the separator is the strongest operator whiotidiio the left.
ex.f 1+2 =(f 1)+2 ,f 12 =(f 1) 2 N

@ Examples:
Math.sin 1.00 (Math.cos)Math.pi round(3.17)
2 + 3 (real) (3 + 2 * 5)

@ Classifying functions in SML:

@ Built-in functions, ex+, * (both infix),real ,round (both prefix)
@ Library functions, exMath.sin , Math.cos , Real.fromint
@ User-defined functions, ptquare ,/\ , head

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1-24

Evaluating Function Applications

An expression with user-defined functions is evaluatedlanhgito other compound expressions.
When we defined that evaluation, de assumed that SML ,knoa&’th apply functions to argument
Now we define how SML applies functions:

@ All occurences of the formal parameters in the function bayreplaced by the corresponding
arguments, then

@ the function call is replaced with the result of the evaloiaif the prepared body
Let’'s see how 5 is evaluated. Each step, a sub-expression is replaced yuarakent expression.

f 5 — sumOfSquares(5+1, 5*2) — sumOfSquares(6, 5*2) —
sumOfSquares(6, 10) — square 6 + square 10 — 6*6 + square 10 —
36 + square 10 — 36 + 10*10 — 36 + 100 — 136

(val sumOfSquares = fn (x, y) => square x + square y ;val square = fn x => X * X)
This substitution modet equals replaced by equatshelps understanding how function applicatior
works. This model is applicable if the meaning of a functisalways independent from its
environment.

Interpreters/compilers usually work with other, more céewrp- more efficient — models.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1-25

Applicative order (eager evaluation), normal order (lazzleation)

@ When evaluating compound expressions, SML first evaluasperator, then the arguments,
then calls the operator function with the arguments. Thilepis calledapplicative orderor eager
evaluation

@ There are other ways, too. The most important is, when wepaostthe evaluation of
sub-expressions as long as possible. The evaluation of-exqriession is needed when it is an
argument of a built-in operator or when it is needed for patteatching in a user-defined
function, and of course, the function itself is also needdds is callednormal orderor
call-by-needor lazy evaluation

Let's see how 5 is evaluated when using normal order evaluation.

f 5 — sumOfSquares(5+1, 5*2) — square(5+1) + square(5*2) o
(5+1)*(5+1) + (5*2)*(5*2) — 6%(5+1) + (5*2)*(5*2) — 6*6 + (5*2)*(5*2)
— 36 + (5*2)*(5*2) — 36 + 10*(5*2) — 36 + 10*10 — 36 + 100 — 136

@ It is proven that for functions, for which the substituion debis applicable, these two strategies
lead to the same result.

@ Note that when using lazy evaluation, some sub-expressmss$ be evaluated multiple times.

@ Compilers/interpreters help this situation with alias{neferences): identical sub-expressions
aren’t copied, only referenced:. when one occurance is atediiso do the others.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1-26

Conditional expressions, boolean operators, predicates

@ Type namebool . Data constructordalse ,true . Built-in function: not .

@ |azybuilt-in operators (special language constructs)

@ With three parametersf b then el else e2

It doesn’t evaluate?2, if b evaluates tdrue , and doesn’t evalua&l otherwise.
@ With two parameters:

el andalso e2 : doesn’tevaluate2, if el isfalse

el orelse e2 :doesn’tevaluate2,if el istrue .

@ All three operators are just syntactic sweeteners:

@ if b then el else e2 = (fn true => el | false => e2) b
@ el andalso e2 = (fn true => e2 | false => false) el
@ el orelse e2 = (fn true => true | false => e2) el

@ Typical error:if exp then true else false

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1-27

Conditional expressions, boolean operators, predicates

Let’'s see some examples.
X < 0 then ~x
else if x > 0 then x

else 0
X < 0 then ~x
else X

val absolute = fn x => |f

val absolute = fn x => |f

use "sumOfSquares.sml";

val sumOfSquaresOfTwoLarger =

fn (x,y,z) =>
if X < y andalso x < z then sumOfSquares(y, z)

else if y < x andalso y < z then sumOfSquares(x, z)

else sumOfSquares(x, VY);

Predicateis a function which’s return value [sool . Example:

val isAlphaNum = fn ¢ =>
#'A" <= andalso ¢ <= #"Z" orelse

C
#'a" <= ¢ andalso ¢ <= #"z" orelse
#"'0" <= ¢ andalso ¢ <= #"9"

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1-28

Conditional expressions, boolean operators, predicates

@ Trivial: andalso andorelse can be expressed withthen-else

@ if el then e2 else false

= el andalso e2

@ if el then true else e2 = el orelse e2

@ Let's useandalso andorelse instead ofif-then-else where applicable, it makes the

code more readable.

@ In SML, user-defined functions can't lezy. SML always evaluates the arguments before calli

a function.

@ Eager equivalents @fndalso andorelse

* & (@, b)) =a AN Db
&& : bool * bool -> bool
%)
fun op&& (a, b) = a andalso b;
infix 2 &&

@ infix prec nanel nane2 ..

* Il (& b)=a\Vb
|| : bool * bool -> bool

%)
fun op|| (a, b) = a orelse b;
infix 1 ||
turnsnanel nanme2 ... functions toinfix operators

with pr ec precedence and binding to the left.

Higher-level functional programming. BME VIK, Autumn 2006

(Functional programming)

FP-1-29

Calculating square roots with Newton’s method

@ Functions in a functional languages are similar to fundimnmathematics: they return values
depending on the values of one or more arguments. There gsdiff@rence: functions in
functional languages must be efficiently computable.

@ Let’s see the definition of the square root function in math:
VT =y, wherey > 0 andy?® = x.

@ This equation system is adequate for checking whether a euisla square root of another, but
it adequate for computing square roots?

@ Functions in mathematics declare a property, functionsmetional languages also tdiow to
producethe value. That is, declarative programming is declaraiiMg when compared to
imperative programming (WHAT2=> HOW?).

@ A well-known method for computing square rootssigccessive Approximatiotf y is an
approximation for the square root ©f then the average gfandz/y is a better approximation.
The process produces successive approximatiog&radnd stops when the approximation is
considered good enough.

@ Let’s write this algorithm in SML.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1-30

Calculating square roots with Newton’s method

val rec sqrtiter =
fn (guess, x) => if goodEnough(guess, Xx)
then guess
else sqrtiter(improved(guess, X), X)

@ Therec keyword means that the value declaratioreisursive the declared value (name) will b
used in its own declaration.

@ Qur strategy is a good example for top-down design. In thénipérg, we don’t care about detalil
we assume that everything we need is already available, anchplement them later.

So, we have to define a few details:

val improved = fn (guess, x) => average(guess, x/guess)

val average = fn (x, y) => (x+y)/2.0

val goodEnough = fn (guess, x) => abs(square r guess - x) < 0.0 01
val square r = fn (x : real) => x * X

Finally, we have to call outgriter function with an initial approximation value:

val sqrt = fn x => sqrtlter(1.0, x);

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1-31

Calculating square roots with Newton’s method

@ Unfortunately, the order of declarations is not adequakéL Eequires that the definition of name
must precede their first use. (This is not required in songy)lnctional languages!!!)

@ We could reverse the order of our declarations, but thendtde wouldn’t reflect our design, our
way of thinking.

@ \We can usesimultaneous declaratignvhich means, that several declarations are grouped
together: read simultaneously, then processed simultehed he names declared together are
separated by thend keyword.

val rec sqrtiter =
fn (guess, x) => if goodEnough(guess, Xx)
then guess
else sqrtlter(improved(guess, X), X)
and improved = fn (guess, x) => average(guess, x/guess)
and average = fn (x, y) => (x+y)/2.0
and goodEnough = fn (guess, x) => abs(square r guess - x) < 0.0 01
and square r = fn (x : real) => x * X
val sqrt = fn x => sqrtlter(1.0, x)

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1-32

Calculating square roots with Newton’s method

@ Up to this point, our abstraction methods (name giving fanasa and functions) are useful for
handling complex things as units, but aren’t useful in hgydaetails.

@ There are several language constructs for hiding detais.rost essential is the ,,expression w
local declal declaration”, or simplylet -expression”,

@ Thelet -expression is used also for defining (and evaluating) reauexpressions only once.

@ Syntax: let d where d is a non-empty declaration-sequence,
in e : :
e is a non-empty expression.
end Ply €Xp

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1-33

Calculating square roots with Newton’s method

fun sqrt x =
let fun sqrtiter (guess, x) =
if goodEnough(guess, x) then guess
else sqrtiter(improved(guess, X),X)
and improved (guess, x) = average(guess, x/guess)
and average (X, y) = (x+y)/2.0
and goodEnough (guess, x) = abs(square r guess - x) < 0.001
and square r (x : real) = x * X
in
sgrtiter(1.0, x)
end

@ In SML the scope and visibility rules are similar to the rulesther languages

@ For example, the formal parameter of theqrt function is visible in the functions defined
insidesqgrt , unless they’re covered by a locahame.x is used everywhere insidgg|rt asa
global name.

@ Remark: thereal type constraintould be omitted: SML can derive the type from the
environment.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1-34

Calculating square roots with Newton’s method

(* A simplified variant: *)
fun sqrt x =
let fun sqrtiter guess = if goodEnough guess

then guess
else sqrtiter(improved guess)

and improved guess = average(guess, x/guess)

and average (x, y) = (x+y)/2.0

and goodEnough guess = abs(square_r guess - X) < 0.001

and square r x = X * X

in
sqrtiter 1.0
end;

With giving meaningful names to parts of the program, it Imaeaimpler and easier to understand.
With separation of concerns

@ programming,
@ understanding (for future readers),

@ modifying became easier.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1-35

Procedures (functions) and processes

@ Procedures (functions) are patterns, which define, whatdhgutations do, define the local
behaviour of the processes.

@ The global behaviour of a process (number of steps, exettitiee, space consumed) is more
difficult to guess.

Linear recursion and iteration

@ Simply transforming the mathematical definition of the faizl function to SML gives:
(* PRE : n >= 0 %
0l=1 fun factorial 0 = 1
n! =n(n—1) | factorial n = n * factorial(n-1)
@ If we apply oursubstitution modele can see that the process produces and stores all the
numbers between and1, before executing the first multiplication, it postpones th
multiplications. This is a linear recursive process.

@ Instead of this, we could multiply with 2, then the partial result witB, then with4, and so on,
when reaching, the last partial result would bé. For this, we need an auxiliary formal
parameter (or a local variable in imperative languagesichvstores the current partial result, ar
another, which counts fromto n. This would be a linear iterative process.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1-36

Linear recursion and iteration

fun factorial n =
let fun factlter (product, counter) =
if counter > n
then product
else factlter(product*counter, counter+1)

in
factlter(1, 1)
end
@ \We get a simpler, clearer versionfafctiter |, if we decrement the counter from

(* PRE : n >= 0 ¥
fun factorial n =
let fun factlter (product, 0) =
product
| factlter (product, counter) =
factlter(product*counter, counter-1)
in
factlter(1, n)
end

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1-37

Linear recursion and iteration

Linear recursive version: Linear iterative version:
factorial 5 factiter (1 D)
5*factorial 4 factlter (1 *5,4)
5*(4*factorial 3) factlter (5 4)
5*(4*(3*factorial 2)) factlter (5 *4,3)
5*(4*(3*(2*factorial 1))) factiter (20 ,3)
5*(4*(3*(2*(1*factorial 0)))) factlter (20 *3,2)
5*(4*(3*(2*(1* 1)N)) factlter (60 ,2)
5*(4*(3*(2* 1) factliter (60 *2,1)
5*(4*(3* 2) factlter (120 1)
5*(4* 6) factlter (120 *1,0)
5* 24 factlter (120 ,0)
120 120

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1-38

Procedures (Functions) and Processes

@ Don’t mix recursive processes and recursive proceduresiffans).
@ In the case of a recursive function, it is a matter of sintae: function calls itself.
@ In the case of a recursive process, we are talking about hewaimputation is executed.

@ If the function isright-recursive (tail-recursive, terminal-recursivé)e generated process can b
iterative (depending on the goodness of the interpretenpder).

We'll return to the topic of ,,abstraction with functions”ubnow we switch topic: we study the
concept ofparametric polymorhpisprand a polymorph data structure, the list.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

POLYMORPHISM

FP-1-40

Polymorphism

@ Let's examine the identity functiofun id x = X

@ What is the type ok ? It can be of any type, its type is denoted hype variable
Moscow ML:val 'a id = fn : 'a -> ’a
SML/NJ:val id = fn : 'a -> 'a

@ id is apolymorphfunction,x andid are poly-typed names.

@ Names beginning with an apostrophe are type names, and ¢hletber type names are
pronounced as the corresponding greek letter’éexalpha).

@ [et's examine the equality functiofun eq (X, y) = x =y
@ What are the types of andy?val "a eq = fn . "a * "a -> bool

@ Names beginning with two apostrophes are equality-typ@&sathey stand for types which can |
checked for equality.

@ The atomic data types are equality types, exceptdal , and compound data types containing
only equality types are equality types. Function types 'aeguality types.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-I-41

Types of Polymorphism

Polymorphism shows up in different forms in programming:

@ If a polymorph name denotes one single algorithm which camseel on arguments of any type,
IS parametric polymorphism

@ If an overloadedname denotes several different algorithms: one algorittmedch type it is
defined for, it isad-hocor overloaded polymorphism

@ A third variation ispolymorphism via inheritencgsee object oriented programming).

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

LISTS

FP-1-43

List: definition, data- and type-constructors

@ Definition

1. A list is a finite sequence of elements having the same type.
2. Alist is a linear recursive data structure, which can be

@ empty,

@ the first element and the list of the other elements.

@ Constructors

@ The empty list is denoted by thel name, which is @ata constructor constant
@ We usually use thf symbol instead ofil (syntactic sugar).

@ The type omil is:’a list

@ 'a is atype variablelist is atype constructor functian

@ The:: name is alata constructor functiofor adata constructor operatQr
It creates a new list from an element and a (possibly emiy) i

@ Thetypeof: is:’a * 'a list -> ’a list :
It is an infix operator, having precedence 5, binding to tgatri
@ The:: name is pronounceur-dots(or cons(constructor) for historical reasons).

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1-44

List: notation, patterns

@ Examples

@ Creating lists with data constructors:

nil # ool
3519 ::nil =3 (5 (9 i)
@ Syntactic sweetener for lists:
[1 = nil
[3, 5, 9] = 3259 ::nil
@ Caution! Prolog’s list notation is similar, but there aréelences:
SML Prolog . SML Prolog
[] [] sam (X::XS) [X|Xs] different
[1,2,3] [1,2,3] sam (x:iy:iys) [X,Y|Ys] different
@ Patterns
Expressions built witli] andnil data constructor constants and with thedata constructor
operator, and thix1, x2, ..., xn] list-notation can be used in patterns (in the head of
functions).

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1-45

List: head bd), tail (tl)

@ The first element of a (non-empty) list is head

(* hd : 'a list -> ’a

hd xs = first element of the non-empty list xs (head of xs)
*)
fun hd (x ') = Xx;

@ The list containing the elements of a list, after the firg t@il).

(* tl : 'a list -> 'a list
tl xs = the list containing all elements of the list xs
but the first one (the tail of x)

")

fun tl (_ 1 xs) = xs;
@ hd andtl are partial functions. Theists.hd andList.tl functions return aempty
exception when applied to empty lists.

@ The_ (underbar) is the so called wildcard symbol, the match{angtpattern. In contrast to
Prolog, it can only be used in function heads.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1-46

Handling lists: lengthléngth), sum of elementagum), product of elements

(rprod)

@ Thelength function returns the length of a list.

(* length : ’a list -> int
length zs = the number of elements in zs *)
fun length [] =0
| length (_ :: zs) = 1 + length zs

@ Theisum function returns the sum of elements in an integer list.

(* isum : int list -> int
isum ns = the sum of elements in ns *)
fun isum [] =0
| isum (n :: nsS) = n + isum ns

@ Therprod function returns the product of elements in a real list.

(* rprod : real list -> real
rprod xs = product of elements in xs *)
fun rprod [] = 1.0
| rprod (x :: xs) = x * rprod Xs;

Higher-level functional programming. BME VIK, Autumn 2006

(Functional programming)

Exampleshd, tl ,length ,isum , rprod

FP-I-47

@ hd, tl
Expression Result of evaluation
List.hd [1, 2, 3]; >val it =1 : int
List.hd []; I Uncaught exception:
I Empty
List.tl [1, 2, 3]; > val it = [2, 3] : int list
List.tl []; I Uncaught exception:
I Empty
@ length ,isum, rprod
Expression Result of evaluation
length [1, 2, 3, 4]; > val it = 4 : int
length []; > val it = 0 : int
isum [1, 2, 3, 4]; > val it = 10 : int
isum []; > val it = 0 : int

rprod [1.0, 2.0, 3.0, 4.0]; > val it = 24.0 : real

rprod []; > val it = 1.0 : real

Higher-level functional programming. BME VIK, Autumn 2006

(Functional programming)

FP-1-48

map: Aplying a function to each element of a list

@ Example: calculate the square root of each number in a list.

load "Math";
map Math.sgrt [1.0, 4.0, 9.0, 16.0] = [1.0, 2.0, 3.0, 4.0];

@ Ingeneralmap f [X |, X 9, ..., X o = [Fx 4, X 9 0 X]
@ The definition ofmapis (mapis a polymorph function):

* map : (a -> 'b) -> ’a list -> b list
map f xs = the list of elements in xs mapped by f
%)
fun map f [] = []
| map f (x 2 xs) = f x 2 map f xs;

@ The type ofmapis (because the> type operator binds to the right!):
(a -> 'b) -> 'a list -> 'b list = (a -> 'b) -> (a list -> 'b list)

@ Themapfunction is apartially applicable andhigher orderfunction: if applied toda -> b
function, resultsto &a list -> b list function. The resulted function, when applied t

'a list cresultsin db list

@ This function is pre-defined in SML.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1-49

Proving (informally) the correctness of recursive funopwithmapas an example

@ \We have to prove that the recursive function is

@ functionally correct: the result is what we expect
@ the evaluation of the function is finite (it does not fall in @mfinite recursion”)

@ The proof is with structural induction by length (similarn@athematical induction

fun map f [] =]
| map f (x - xs) = f x :: map f xs
@ Let's assume thanhapworks for lists of lengthn — 1. (tail of the list,xs)
@ Let's applyf to the first element of the list. (head of the lis),
@ Let’s build a new list fronf x andmap f xs

@ The result is what we expected, we have proven that if thetimmevorks for lists of length
n — 1, then it works for lists of lengtin.

@ |t trivially works for lists of lengtho.

@ The evaluation is finite, because
@ every list is finite,
@ When recursively callingnap, its argument is a one shorter list in every step.
@ The recursion is stopped when the empty list is reached.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1-50

A few built-in and library functions

@ explode : string -> char list — the list of characters in the string
pl. explode "abc" = [#"a", #"b", #"c"]

@ implode : char list -> string — the string made of the characters in the list
pl. implode [#"a", #"b", #"c"] = "abc"

@ Variants ofmap, which work for other compound structures. Examples:

@ String.map : (char -> char) -> string -> string
@ Vectormap : ('a -> 'b) -> ’a vector -> 'b vector

@ In theChar library, we can find many usefpiredicatefunctions. Examples:

@ Char.isLower : char -> bool — true for the lower case letters of the alphabet

@ Char.isSpace : char -> bool — true for the formatting characters

@ Char.isAlpha : char -> bool — true for letters of the alphabet

@ Char.isAlphaNum : char -> bool — true for letters of the alphabet and for numbe

@ Char.isAscii : char -> bool — true for characters having ASCII code smaller th
128

pl. Char.isSpace #"\t" = true; Char.isAlphaNum #"I" = false

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1-51

filter : elements of the list that satisfy a predicate

@ Example: Collect the lower case letters from a string.

List.filter Char.isLower (explode "AITeRnAtInG") = [#"I" Ale" #'n" A # ',
@ Ingeneral,ifp x; = true , p X, = false , p x3 =true , ..., p Xop 1 = true ,
thenfllter p [X b X2, X3 ...y X 2/6-1—1] - [X Iy X35 .y X 2/6-1—1] .

@ The definiton offilter

(* filter : (a -> bool) -> 'a list -> ’a list
filter p zs = The elements of zs satisfying p
*)
fun filter _[] = []
| filter p (x 1 xs) =
if p x then x :: filter p xs else filter p xs;

@ The type offilter (a-> binds to the right!):
filter : ("a -> bool) -> 'a list -> ’a list

That is, iffilter is applied to da -> bool function (an'a predicate), results in a
(Ca list -> ’a list) function, which when applied to da list , results in an

'a list

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1-52

Finding the maximal element in a list

@ The empty list does not have a maximal element,
@ The maximal element in a one-element-list is the only eldmen
@ The maximal element of a list having at least two elements is:

@ The maximum of the first element and the maximal element inathef the list

load "Int": max a variant for integers:
(* maxl : int list -> int (* max: int * int -> int

maxl ns = The maximal max (n,m) =

element in ns the maximum of n and m

%) %)
fun maxl [] = raise Empty fun max (n,m) = if n>m

| maxl [n] = n then n

| maxl (n::ns) = Int.max(n, maxl ns) else m

@ The maximal element in the list with the smaller of the firsb ®lements removed

fun maxl’ [] = raise Empty

| maxl’ [n] = n

| maxl’” (n::m::ns) = max!’(Int. max(n,m)::ns)
@ Unlike inmaxl , here the order of clauses is unimportant (the patternsisjtendt).
@ maxl’ istail-recursive its space consumption is constant.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1-53

Finding the maximal element in a list

@ How can we makenax| a polymorph function? We define it aganericfunction: It has an extr:
parameter, the function which choses the maximum of two etfdm

(* maxl : (a * 'a -> ’'a) -> ’a list -> ’a
maxl max zs = the maximal element in zs, according to max
*)
fun maxl max [] = raise Empty
| maxl max [z] = z
| maxl max (z::zs) = max(z, maxl max zs)

@ maxis always the same, even so we give it as an argument in eaatsirercall. We can improve
efficiency (in some implementations), if we use a let-exgis

fun maxl max zs = let fun mxl [] = raise Empty
| mxl [y] =y
| mxl (y::ys) = max(y, mxl ys)
in
mx| zs
end

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1-54

Variations ofmax

Variations ofmax

@ (* charMax : char * char -> char
charMax (a, b) = the maximum of a and b
")
fun charMax (a, b) = if ord a > ord b then a else Db;
or simply withoutord :

fun charMax (a : char, b) = if a > b then a else b;

@ (* pairMax : ((int * real) * (int * real)) -> (int * real)
pairMax (n, m) = lexicografically greater of n and m
%)
fun pairMax (n as (nl : int, n2 : real), m as (ml, m2)) =
if n1 > ml orelse n1 = ml andalso n2 >= m2 then n else m;

@ (* stringMax : string * string -> string
stringMax (s, t) = the greater of s and t

")

fun stringMax (s : string, t) = if s > t then s else ft;

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1-55

Concatenatinggppend) and revesringrirev) lists

@ Concatenation of two listappend function, or infix operato@

(1, 2] Qyr,] = T, T | QT Y, Y] = =T T, YL, - Yl

First, we decomposes to its elements, then we append the elemenystbackwords, starting
from the end oks , because lists can be built on the left. Number of stéps:).

(* append : 'a list * 'a list -> ’a list
append(xs, ys) = all elements of xs prepended to ys *)
fun append ([], ys) = ys
| append (x::xs, ys) = x:append(xs, ys)

@ Naive reverse of a lisinfev)
nrev(ry, Lo, ..., Ty = nrev(rs, ..., r, Qx| = nrev|..., x,|Qx]Qlx| = ... =[xy, ..., 2]
We append the first element as a one-element list to the erdndinber of stepgd(n?).

(* nrev : ’'a list -> 'a list
nrev Xs = reverse of xs ¥)
fun nrev [] = []
| nrev (x::xs) = (nrev xs) @ [X]

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1-56

Reversing lists: example for usimgev

@ Example for evaluatingrev :
The operators. and@bind to the right, have precedence of 5.

fun nrev [] = []
| nrev (x::xs) = (nrev xs) @ [X]

fun [] @ ys = ys
| (XiiXxSs) @ ys = X XS @ ys (* = (X - XS) @ ys %)

nrev([1,2,3,4]) — nrev([2,3,4]) @[1] — nrev([3,4]) @[2]@[1]
— nrev([4])) @[3]@[2]@[1] — nrev([])@[4]@[3]@[2]@[1]
— [|@4]@[3]@[2]@[1] — [4]@[3]@[2]@[1]
— 4:[]@[3]@[2]@[1] — 4:[3]@[2]@[1])
— [4,3]@[2]@[1]) — 4:([3]@[2]))@[1])
— [l@[4]@(3::[2,1] — [|@[4]@[3,2,1] — ..

nrev isn't efficient: the number of steps @(n?).

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1-57

Appending and reversing listesyApp andrev)

@ Appending the elements of a list in front of another, in reesorder (fevApp)

(* revApp : ’a list * 'a list -> ’a list
revApp(xs, ys) = the elements of xs in reverse order and ys
")
fun revApp ([], ys) = ys
| revApp (Xx::xs, ys) = revApp(xs, X:ys)

The number of steps faevApp is proportional to the length of the list. With its help, weica
implementrev :

(* rev : 'a list -> ’a list
rev Xxs = XS reversed
*)

fun rev xs = revApp (xs, [])

A list having 1000 elements is reversedLino steps byrev and in1%%'%% = 500500 steps by
nrev .

@ append — @as an infix operator — an@v are available as built-in functions.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

COMPOUND DATA STRUCTURES

FP-1-59

Record and n-tuple

@ From two different types, we can form a record or a pair. ex:
{x =2,y =10} : {x:int y : real} and(2, 1.0) : (int * real)

@ A pair is just syntactic sweetener. ex:
(2,100 ={1=2,2=10 ={2=10,1=2} #{1=10 2=2}
In a pair, the order of fields is importarit'and2 are field names.

@ We can form a record with more than two values. ex:

{name = "Bob", tel = 3192144, age = 19} :
{age : int, name : string, tel : int}

And similar record with numbers as field names:
{1 = "Bob", 3 = 3192144, 2 = 19}: {1 : string, 2 : int, 3 : int}
The latter is equivalent of the followingr-tuple
("Bob", 19, 3192144) : (string * int * int)
that is
(string * int * int) ={1 = string, 2 = int, 3 = int}
@ In arecord, the order of fields is unimportant, the fields deaiified by the field names. In an
n-tuple, the order is important, fields are identified by tipeisition.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

WEAK AND STRONG ABSTRACTION

FP-1-61

Data types: weak and strong abstraction

@ \Weak abstraction: the name is just a synonim, the parts afdteestructure are still visible and
available

@ Strong abstraction: the name denotes a new entity (obpaaiability of the parts of the data
structures is limited

@ type : weak abstraction; exype rat = {num : int, den : int}

@ Gives a new nhame to a type expression (compare with valuardicn).
@ Helps reading the program.

@ datatype :in combination with modules: strong abstraction
ex:datatype rat = Rat of {num : int, den : int}

@ Creates a new entity.
@ Can be recursive and polymorph.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1-62

Data types: enumerated and polymorph types datatype declaration

@ datatype answer = Yes | No Enumerated type.
datatype answer3 = yes | no | maybe Enumerated type.
datatype ’'a option = NONE | SOME of 'a Polymorph type.

@ The new entities¥es,No, yes , no, maybe, NONEare valuesgdata constructor (constant)s
SOMEs data constructor functionData constructors are in the samsmespaceas the other
(value) names.

@ The new entitiesanswer andanswer3 aretype constructor (constant)sption is atype
constructor function (postfix operatorJype constantsaphswer) and type functions applied to
other typesifit option ,’a option) are type expressions. Type constructors are in a
differentnamespacas value names.

@ Of course, data constructors have a type as well. ex:

Yes : answer NONE : ’a option
No . answer SOME : 'a -> ’a option

@ Example for function handling a user-defined datatype:

fun invert No = Yes | invert Yes = No

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

WORTH TO MENTION

FP-1-64

Worth to mention

@ Unit value and type
The() or{} symbolis &D-tuple its type isunit . TheO-tuple is the only value of the type
unit . Theunit type is the unit element of type operations.

@ Theprint function
If the print function (string -> unit) when applied to atring , the resultis a
O-tuple , and a side effect is that the string is written to the stachdartput.

@ The(el;e2;...;en) sequential expression’s result is the valueof If el, e2, ... have side
effects, it will be carried out(el; e2; e3) is equivalent to the followindet -expression:

let val = el val = e2 in e3 end
@ The value of theel before e2 ... before e3 expression is equivalent to thr value of
el. If el, e2, ... have side effects, it will be carried oatl before e2 before e3 1S

equivalent to the followinget -expression:

let val e = el val _ =e2 val = e3 in e end

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

ABSTRACTION WITH FUNCTIONS

FP-1-66
Tree recursion

@ So far, we have met linear recursive and linear iterative@sses (calculating factorials in sever
ways).

@ Now let’'s see examples fdree recursion let’s generate the sequence of Fibonacci-numbers.
@ A Fibonacci-number is the sum of the two previous Fibonaconibers:
o0, 1,1, 2 3,5, 8, 13, 21, ...

@ The definition of Fibonacci-numbers can be easily transéatmto an SML function:

F(0)=0 fun fib 0 = O
F(l)=1 | fib 1 =1
Fin)=Fn—-1)+F(n—-2),ifn>1 | fib n = fib(n-1) + fib(n-2)

Remember: the third clause of the function must be the last, because thpattern matches
anything.

@ A recursive function (procedure) with more than one rewarsall is calledree recursion

@ The figure on the next slide will show how this tree-recut$iugction evaluated.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

Tree recursion

@ We getfib 5 with calculatingfio 4 andfio 3 ,fib 4 withfib 3 andfib 2 and soon.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1-68

Tree recursion

@ The previous program is good for introducing tree recurdooih almost totally unusable for
generating Fibonacci-numbers.

@ Note that for example we calculatéd 3 two times, doing about the third of the work
unnecessarely.

@ It can be proven that foF' (n), a tree with exactly’(n + 1) leafs must be fully explored, where tt
leafs are thd"(0) and F'(1) calls.

@ F(n) is an exponential function of. To be more precisé;(n) is an integer close td" /+/5,
whered = (1 — /5)/2 ~ 1.61803, the so calledjolden sectiomatio number® satisfies the
d? = d + 1 equation.

@ The number of required steps grows togerher with), exponentially withn. In the meanwhile,
the memory consumed is only proportionaltdbecause only one root-leaf path has to be kep
memory.

@ In general, it is true that the number of steps is proportibmthe leafs and nodes of the tree,
while the memory usage is only proportional to the maximaitdef it.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1-69

Tree recursion

@ Fibonacci-numbers can be generated by a linear-iteratveegs.

If there aren andb variables with initial valueg’(1) = 1 and F(0) = 0 respectively, and we
iteratively apply the: < a + b andb « « transformations, aftet iterations,a = F'(n + 1) and

b= F(n) will hold.

@ It is an imperative algorith, which is straightforward toplament in imperative languages. Let™
see how it can be implemented in SML.

fun fib n = let fun fiblter (i, b, a) =

if i = n
then b
else fiblter(i+1, a, atb)
in
fiblter(0, 0, 1)
end

@ Note that the transformation is the same straigtforwardpso(iterations) are (tail-)recursive
auxiliary functions, local variables are parameters offtimetions, initial values appear as

arguments of the auxiliary functions.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1-70

Tree recursion

@ Pattern matchingan be used if we decremeantrom n to 0.

fun fib n = let
fun fiblter (0, b, a) = b
| fiblter (i, b, a) = fiblter(i-1, a, a+b)
in
fiblter(n, 0, 1)
end

@ \Warning: the order of clauses is important, as the patten’adisjunct.

@ Note that in contrast to imperative style, the place wheegariables" are "changed" is strict: i
the recursive function call. In an iteration in an imperati@nguage, you can scatter your varial
assignments anywhere in the loop, and if a variable is urggdrthen there is no point where tf
can be seen: the absence of the assignment is hard to notice.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1-71

Tree recursion

@ In the Fibonacci-example, the numer of steps was exponéntiain the tree-recursion example
and was proportional ta in the linear-iterative version.

@ |t would be a mistake to conclude that tree recursion is gseM/hen dealing with hierarchical
data structures, for example, working with trees, treengoun is natural and useful.

@ Tree recursion can be also useful when impementing a firstoreof the solution for a problem:
it is easy to implement, easy to reason about the program.

@ In our example, it was easy to transform the mathematicahitiefn to a program, and after
examined and understood, was easy to change it to becomerffioo. Tree recursion helps
understanding a problem and solution.

There was a need for only a small idea to transform our progoatarative.
For this example, it isn’t that simple:

@ How many ways can you change one dollar to 50-, 25-, 10-, 51aceht coins?

@ In general: How many ways can you change a given amount of yrorgiven coins?

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1-72

Tree recursion: changing money

Let’'s assume that we havedifferent type of coins, in a descending order. Then the remobways
in we can change dollars is, we calculate

@ how many ways we can changevithout using the first (the biggest) coin (having vaili)eand
we add

@ how many ways we can change- d with all the coins we have. In other words: how many wa
we can change in such a way that we use the first coin at least once.

This problem can be solved by recursion, as the problem caadueed to smaller problems:
changing smaller amount of money with less coins. The basesazan be the following:

@ If o = 0, the number of ways is 1.
(If we have 0 dollars, it can be changed only one way: with QgD

@ If a < 0, the number of ways is 0.

@ If n =0, the number of ways is 0.

In our example, we implemented thestDenomination function with enumeration.
It would be more flexible to implement it with using a list.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1-73

Tree recursion: changing money

fun countChange amount =
let (* cC amount kindsOfCoins = the number of ways amount can b e changed with
using kindsOfCoins coins *)

fun cC (amount, kindsOfCoins) =
if amount < 0 orelse kindsOfCoins = 0 then O
else if amount = 0 then 1
else cC (amount, kindsOfCoins - 1) +

cC (amount - firstDenomination kindsOfCoins, kindsOfCoin S)
and firstDenomination 1 = 1
| firstDenomination 2 = 5

| firstDenomination 3 = 10
| firstDenomination 4 = 25
| firstDenomination 5 = 50
in
cC(amount, 5)
end;

countChange 10 = 4; countChange 100 = 292;

Practice:
@ ChangdirstDenomination function to have the values of coins in a list.

@ ChangecC function to use pattern matching.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1-74

Exponents

@ In processes seen so far, the number of evaluation (exegstieps grew linearly, or exponential
with n, the number of data units. In the next example, the numbdepEss proportional to the
logarithm ofn.

@ The definition ofb raised to the power of is also easy to transform into SML.

=1 fun expt (b, 0) = 1
b' =b- bt | expt (b, n) = b * expt(b, n-1)

@ The outcome process is linear recursive. Execution reg|tife) steps and memory of size(n).

@ Itis similarly easy to write the linear iterative version.

fun expt (b, n) =
let fun exptlter (0, product) = product
| exptlter (counter, product) =
exptlter (counter-1, b * product)
in
exptlter(n, 1)
end

@ Execution require®(n) steps and memory of size(1) i.e. constant.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1-75
Exponents

@ Fewer steps suffice, provided we take advantage of the eqsatelow:
fun expt (b, n) =
let fun exptFast 0 = 1
| exptFast n =
if even n
then square(exptFast(n div 2))

else b * exptFast(n-1)
and even i =i mod 2 =0

and square x = X * X
in exptFast n end

@ Steps and memory needed is proportionaity »). Iterative version with constant storage req
fun expt (b, 0) =1 (* Not to be omitted! Why not?*)
| expt (b, n) = let fun exptFast (1, r) =r

| exptFast (n, r) =
if even n then exptFast(n div 2, r*r)

else exptFast(n-1, r*b)
and even i =i mod 2 =0

in exptFast(n, b) end

W=1

b" = (b"?)?, if nis even
V" =b-b"1, if nis odd

Higher-level functional programming. BME VIK, Autumn 2006

(Functional programming)

LISTS

FP-1-77

A given number of elements from the beginning and end of gidthke , drop)

@ Letes = [SU(), L1y s Ti—1,Ljy Ljsly .- ,ZCn_l], then
take(xs, i) = [xo, 21, ..., x;1] anddrop(xs, i) = [T, Tiv1y oy Ty

@ An implementation ofake (is it tail-recursive? can it be made tail-recursive? i®hust?)

(* take : ’'a list * int -> 'a list
take (xs, 1) = if i < 0, xs;, If i >= 0,
list consisting of the first i elements of xs *)
fun take (, 0) =]
| take ([l) = I

| take (x::xs, i) = x :: take(xs, i-1)
@ An implementation ofirop (is it tail-recursive? can it be made tail-recursive? i®hust?)

(* drop : 'a list * int -> 'a list
drop(xs, 1) = if i < 0, xs; if i >= 0,
list obtained by leaving the first i elements of xs *)

fun drop ([, _) = I
| drop (x::xs, i) = if 1 > 0 then drop (xs, I-1) else x:xs

@ Their library versions tist.take ,andList.drop = —when applied to the lists, raise an
exception name&ubscript if i < 0or: > length xs

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1-78

Reduction of a list by dyadic operations

Let’s recall the two versions of thmax| function, which finds the maximal element of an integer |

@ The version omax| performing right-to-left reduction (non-tail-recursjve

(* maxl : int list -> int
maxl ns = the maximal element of the integer list ns
%)
fun maxl [] = raise Empty
| maxl [n] = n
| maxl (n::ns) = Int.max(n, maxl ns)

@ The version oimaxl performing left-to-right reduction (tail-recursive)

(* maxlI' : int list -> int
maxl’ ns = the maximal element of the integer list ns
")
fun maxl’ [] = raise Empty
| maxl’ [n] = n
| maxl’ (n:m::ns) = max!’(Int.max(n,m)::ns)

@ As seen in this example, reducing a list by a dyadic operasi@recurring task.

@ They have in common, that we need to get one value frtoralues, that's why we’re talking abot
reduction

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1-79

Reduction of a list by dyadic operatiorfsidr , foldl)

@ A dyadic operation (more preciselyfanctionof prefix position,applicable to a paiy is
performed on a list from right to left bfpldr , from left to right byfoldl . Examples for
computing sum and product:

foldr op* 1.0 [] = 1.0; foldl op+ O [] = O;

foldr op* 1.0 [4.0] = 4.0; foldl op+ 0 [4] = 4;

foldr op* 1.0 [1.0, 2.0, 3.0, 4.0] = 24.0; foldl op+ O [1, 2, 3, 4] = 10;
@ Let @ denote an arbitrary dyadic infix operator. Then

foldrop @ e [xq, X9 .0 X] =KX1& X2 .. @& X, D e.)

foldr op @© e [] = e

foldlop @ e [xq X9, .0y, X] =X, ,® ... D& XD (X1 De€)..)

foldlop @® e [] = e

@ The operana@ of operationd acts as the (right) unit element in some frequently usedatiogrs
such as addition, multiplication, conjunction (logicaht!), disjunction (logical "or"), etc.

@ In the case of associative operations, the resulteldf andfoldl are identical.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1-80

Examples for usindpldr andfoldl|

@ jsum returns the sum of an integer lisprod returns the product of a real list.

val isum = foldr op+ O; val rprod = foldr op* 1.0;
val isum = foldl op+ O; val rprod = foldl op* 1.0;

@ Thelength function can also be defined ligidl orfoldr . As dyadic operation we use an
auxiliary function thadoesn’t usats first parameter.

(* inc : 'a * int -> int
inc (, N =n+ 1%
fun inc (, n) = n + 1;

(* lengthl, lengthr : 'a list -> int *)
val lengthl = fn Is => foldl inc O Is;
fun lengthr Is = foldr inc O Is;

val lengthl = foldl inc O;

lengthl (explode "example string");

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1-81

List: The definition offoldr andfoldl

@foldrop e [Xx, X9 ety X] =10 X2 ... & X, De..)
foldr op @® e [] = e

(* foldr f e xs = the result of the dyadic operation f with
unit element e, applied to the elements
of xs, proceeding from right to left

foldr : ('fa *’'b -> 'b) -> 'b -> 'a list -> 'b *)

fun foldr f e (x::xs) = f(x, foldr f e Xxs)

| foldr f e [] = e

@foldlop e [xi, Xo ooty X] =X ,d ... & X2 X1 & e€)..)
foldlop @ e] = e

(* foldl f e xs = the result of the dyadic operation f with
unit element e, applied to the elements
of xs, proceeding from left to right

foldl : (a * b ->'b) -> b -> 'a list -> 'b %)

fun foldl f e (x::xs) = foldl f (f(x, e)) xs

| foldl f e [] = e;

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1-82

Further examples for usiffgldr andfoldl

@ foldr andfoldl appends elements of one list before another when the cottfunction
consi.e.op:: is used as the dyadic operation.

foldr op:: ys [x L X, X3l = (X 1 (X 20 (X 3:YS))
foldl op:: ys [x 5, X, X3l = (X 30 (X 2 (X 1 1Yys))
@ 1 s not associative, so the resultsfofdl andfoldr are different!

(* append : ’'a list -> 'a list -> ’a list
append xs ys = list obtained by appending xs before ys *)
fun append xs ys = foldr op:: ys Xxs;

(* revApp : ’a list -> ’a list -> 'a list
revApp Xs ys = list obtained by appending
the reversed xs before ys *)
fun revApp xs ys = foldl op:: ys xs;

append [1, 2, 3] [4, 5, 6] = [1, 2, 3, 4, 5, 6]; (cf. Prolog:append)
revApp [1, 2, 3] [4, 5, 6] = [3, 2, 1, 4, 5, 6]; (cf. Prolog:revapp)

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1-83

Further examples for usiffgldr andfoldl

@ Two implementations amaxl

(* maxl : (a * 'a -> ’'a) -> ’a list -> 'a
maxl max ns = maximal element of the list ns according to max

%)
(* non-tail-recursive *)

fun maxl max [] = raise Empty
| maxl max (n::ns) = foldr max n ns

(* tail-recursive *)

fun maxl’ max [] = raise Empty
| maxI max (n::ns) = foldl max n ns

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1-84

Example for working with lists: creating runs

@ "Run" is a list whose adjacent elements satisfy a given c¢mmdi

@ The given condition is passed to the function creating timeasigpredicateto be applied to the
adjacent elements.

@ Our task: to write an SML function that returns a list of rulesnposed of subsequent elements
a list (preserving the original sequence of elements).

@ In the first version, we write an auxiliary function to cre#te first run of a list (a prefix of the lis
which is a run), and another one to create the rest of the list.

@ The auxiliary functiorrun has two arguments: the first one is a predicate testing theedes
condition, the second one is the list whose run prafix must create.

@ The two arguments of the auxiliary functioest are the same as the argumentswf . It must
return the list it obtains by removing the first run from the& jpassed as the second argument.

@ On the next slides, the auxiliary functionsn andrest , as well as different versions of the
functionruns can be seen.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1-85

Example for using lists: creating runs (cont'd.)

@ First version: creating run and rest with two functions

(* run : (a * 'a -> bool) -> (a list) -> 'a list
run p Is = the first (prefix) run of Is satisfying p *)
fun run p (x:[]) = [X]
| run p (x:yzys) = if p(x, y) then x : run p (y:ys) else [X]

(* rest : (a * 'a -> bool) -> (‘a list) -> ’a list
rest p Is = the rest of Is after its run satisfying p *)
fun rest p (x:[])]
| rest p (x::(yys as y:ys))
if p(x ,y) then rest p yys else yys

(* runsl : (a * 'a -> bool) -> ’'a list -> ’a list list
runsl p xs = list consisting of runs of xs satisfying p *)
fun runsl p [] =1
| runsl p (x:xs) =
let val rns = run p (X:Xxs)
val rts = rest p (x:xs)
in
if null rts then [rns] else rns :: runsl p rts
end

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1-86

Example for using lists: creating runs (cont'd.)

@ Factors decreasing efficiency

1.runsl goes through the list twice: firstin , thenrest
2. thoughp never changes, it is passed as a parametenmtoandrest
3. none of the functions uses an accumulator.
@ \Ways to improve
1. run should return a pair, with the run as the first element anddabtas the second; we shot
use an accumulator for collecting the elements of the run,
2. run should be local insideunsl |,

3. the textif null rts then [rns] else can be deleted: the recursion terminates at
next call anyway.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1-87

Example for using lists: creating runs (cont'd.)

@ Second version: creating run and rest with one local functio

(* runs2 : (‘a * 'a -> bool) -> 'a list -> ’a list list
runs2 p xs = list consisting of runs of xs satisfying p
%)
fun runs2 p] =]
| runs2 p (x::xs) =
let (* run : (a list) -> ’a list * 'a list
run Is zs = (prefix,rest) where
prefix is the first run of Is satisfying p,
appended before zs, and rest is the rest of Is
")
fun run (x::[]) zs = (rev(x::zs), [
| run (X:(yys as y:ys)) zs = if p(x, y)
then run yys (X::zs)
else (rev(x:zs), yys);
val (fs, ms) = run (x:xs) []

fs > runs2 p ms
end

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1-88
Example for using lists: creating runs (cont'd.)

@ Third versoin: collecting each run and the list of runs ad wel

(* runs3 : ('a * 'a -> bool) -> 'a list -> 'a list list
runs3 p xs = list consisting of runs of xs satisfying p
%)

fun runs3 p [] =]
| runs3 p (x::xs) =
let (* runs : (‘a list) -> 'a list -> ’'a list * ’'a list
runs xs zs zss = a list consisting of runs of xs

satisfying p, appended before rev(zzs),
the first run appended before rev(zs)

")
fun runs (x:[]) zs zss = rev(rev(x::zs)::zss)
| runs (x::(yys as y:ys)) zs zss =
it p(x, y)

then runs (y:iys) (x::zs) zss
else runs (y::ys) [] (rev(x::zs)::zss)
in
runs (x::xs) [] []
end,

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1-89

Example for using lists: creating runs (cont'd.)

@ Examples for applying the functions:

run op<= [1,9,19,3,4,24,34,4,11,45,66,13,45,66,99] =
[1,9,19];

rest op<= [1,9,19,3,4,24,34,4,11,45,66,13,45,66,99] =
[3,4,24,34,4,11,45,66,13,45,66,99];

runsl op<= [1,9,19,3,4,24,34,4,11,45,66,13,45,66,99] =
[[1,9,19], [3,4,24,34], [4,11,45,66], [13,45,66,99];

runsl op<= [99,1] = [[99], [1]l;
runsl op<= [99] = [[99]];

runsl op<= [] = [];

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

