
FUNCTIONAL PROGRAMMING, PART I



FP-I-2

Contents

Contents of the first part

Introduction

Abstraction with functions and processes

Elements of the Program

Functions and the Processes they generate

Higher-Order Functions

Abstraction with data

The idea of data-abstraction

Hierarchical data structures

Multiple Representations for Abstract Data

Polymorphic and generic operations

Bibliography: [SICP] Abelson, Sussman & Sussman:Structure and Interpretation of Computer
Programs,The MIT Press, 1996

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-3

History of Functional Programming

LISP(LISt Processing), late 1950s, MIT, US, John McCarthy; typeless

for proving some logic expressions (recursive equations),handling symbolic expressions

ML (Meta Language), Edinburgh, GB, mid 1970s; strongly typed,type inference

Scheme,based on LISP, 1975, MIT, US; typeless

SML(Standard ML), late 1980s, strongly typed

Miranda,1985;GB; strongly typed, non-strict semantics, pure functional, lazy evaluation

Erlang, late 80s, Ericsson, SE; concurrency, distribution and fault tolerance, typeless

Haskell,similar to Miranda, 1990s, US; static polymorphic typing, type classes, monadic I/O

Common LISP,1994, ANSI standard;

Clean,similar to Miranda & Haskell 1994, Nijmegen, NL; uniquenesstype system (for I/O)

Mercury,based on Prolog, 1995, Melbourne, AU, functional & other extensions to Prolog

OCaml,based on ML, 1996, INRIA, FR; object-oriented & other extensions to ML

Alice,based on ML, 2003, Saarbrücken, DE; optional lazy evaluation, futures, concurrency

Hume,2003, Edinburgh & St. Andrews, UK; typed, resource-limited

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-4

Functional Programming

What is common in functional languages?

Recursive functions

Recursive data structures

Handling of functions as data

In the following weeks:

We will discusscomputing processesanddatahandled by them

Our programs - the rule systems describing the processes - will be written in SML

We will use the Moscow ML compiler & interpreter

What we learn about abstraction, modelling and program structure will be useful with other
programming languages as well

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



ABSTRACTIONS WITH FUNCTIONS (PROCESSES)



FP-I-6

Program elements

Programming Language: more than just a means for instructing a computer to perform tasks.
Framework within which we organize our ideas about processes, provides ways for combining simple
ideas to form more complex ideas.

primitive expressions, which represent the simplest entities the language is concerned with,

means of combination, by which compound elements are built from simpler ones, and

means of abstraction, by which compound elements can be named and manipulated as units.

Expressions in SML

atomic: names and constants: ex.apple , 486 , 2.0 , "text" , #"A" true

compound: pl.482+pear , 2.3-0.3 , "te"ˆ"xt" , op+(482,4,plum) , #"A"< #"a"

How we combine:

operators (operator, function)

operand (formal parameter)

argument (actual parameter)

recursion

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-7

Examples for using SML

The SML interpreter works in a so calledread-eval-printloop. The evaluation starts when "; " and
ENTERis pressed.

Moscow ML version 2.00 (June 2000)
Enter ‘quit();’ to quit.
- 486;
> val it = 486 : int
- 2.3-0.3;
> val it = 2.0 : real
- "te"^"xt";
> val it = "text" : string
- op+(482,4);
> val it = 486 : int
- #"A"< #"a";
> val it = true : bool
- val it = 486;
> val it = 486 : int

Each expression is actually avalue declaration: if we don’t specify a name, SML binds the nameit
to the value.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-8

Name giving in the global environment

With value declaration, we bind a name to a value:

- val size = 2;
> val size = 2 : int
- 5*size;
> val it = 10 : int
- val ||| = 3;
> val ||| = 3 : int
- ||| * size;
> val it = 6 : int

Remark:| and* are adhesive symbols, so there must be a space between them.

A name can be:

: alphanumeric, which consists of the small and capital letters, numbers the_ and the’ symbols
and starts with a letter

consists of only symbols

Name giving is the simplest abstraction tool in programminglanguages.
Thename–valuepairs are stored in the „memory” of SML, the so called global environment. Later
we’ll see that there are local environments as well.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-9

Construction rules of names

Alphanumeric name: sequence of small letters, capitals, numbers, the apostrophe (’ ) and the
underbar (_) symbols, starting with letter or apostrophe.

Examples:agentSmith Agent_3_Smith agent’smith ’agent

Names starting with an apostrophe denote type-variables (see later).

Symbol-name: sequence of the followingadhesivesymbols:

! % & $ # + - / : < = > ? @ \ ~ ’ ^ | *

Examples:++ <-> ||| ## |=|

The following reserved symbols have special roles:

( ) [ ] { } , ; . ...

Reserved words (can’t be used as names):

abstype and andalso as case do datatype else end eqtype excep tion
fn fun functor handle if in include infix infixr let local non fix
of op open orelse raise rec sharing sig signature struct stru cture
then type val where with withtype while : :: :> _ | = => -> #

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-10

Atomic data types

Type nameDescription Library
int signed integer Int
real rational (real) Real
char character Char
bool boolean Bool
string string String
word unsigned int Word
word8 8 bit unsigned int Word8

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-11

Built-in operators and their precedence

In this table,wordint, num ésnumtxt stand for the followings:
wordint = int , word , word8
num = int , real , word , word8
numtxt = int , real , word , word8 , char , string

Prec. Operator Type Result Exception

7 * num * num -> num product Overflow
/ real * real -> real quotient Div , Overflow
div, mod wordint * wordint -> wordint quotient, remainderDiv , Overflow
quot, rem int * int -> int remainder, quotientDiv , Overflow

6 +, - num * num -> num sum, difference Overflow
^ string * string -> string concatenated stringSize

5 :: ’a * ’a list -> ’a list list with added element
@ ’a list * ’a list -> ’a list concatenated list

4 =, <> ’’a * ’’a -> bool equal, not equal
<, <= numtxt * numtxt -> bool less than, less or equal
>, >= numtxt * numtxt -> bool greater than, greater or equal

3 := ’a ref * ’a -> unit assignment
o (’b -> ’c) * (’a -> ’b)-> (’a -> ’c) function composition

0 before ’a * ’b -> ’a left argument

div −∞, quot rounds towards zero. Results ofdiv andquot , modandrem are equal only if their
two operands have the same sign.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-12

Constants

Signed integer constant (int)

Examples: 0 ~0 4 ~04 999999 0xFFFF ~0x1ff
Counter-examples:0.0 ~0.0 4.0 1E0 -317 0XFFFF -0x1ff

Rational constant (real)
Examples: 0.7 ~0.7 3.32E5 3E~7 ~3E~7 3e~7 ~3e~7
Counter-examples:23 .3 4.E5 1E2.0 1E+7 1E-7

Unsigned integer constant (word)

Examples: 0w0 0w4 0w999999 0wxFFFF 0wx1ff
Counter-examples:0w0.0 ~0w4 -0w4 0w1E0 0wXFFFF 0WxFFFF

Character constant (char): the# symbol and a one-character string (see later).

Examples: #"a" #"\n" #"\ˆZ" #"\255" #"\""
Counter-examples:# "a" #c #""" #’a’

Boolean constant (bool): only two constants

Examples: true false
Counter-examples:TRUE False 0 1

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-13

Constants, escape sequences

String constant: zero or more printable characters, spacesor escape-sequencesbeginning with the
\ symbol; between double quotes (" )

Escape-sequences

\a Bell (BEL, ASCII 7).
\b Backspace (BS, ASCII 8).
\t Horizontal tabulator (HT, ASCII 9).
\n Newline (LF, ASCII 10).
\v Vertical tabulator (VT, ASCII 11).
\f Form feed (FF, ASCII 12).
\r Carriage-return (CR, ASCII 13).
\ ˆc Control-character, where64 ≤ c≤ 95 (@ . . . _), and the ASCII code of\ ˆc is

smaller by 64 than the ASCII code ofc.
\ ddd The character having ASCII codeddd (ddd is decimal).
\u xxxx The character having ASCII codexx (xx is hexadecimal).
\" Double quotes (" ).
\\ Backslash (\ ).
\ f · · · f \ Ignored charactersf · · · f zero or more formatting characters (space, HT, LF, VT,

FF, CR) symbools.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-14

Evaluating compund expressions

A compund expression is evaluated in two steps (so calledeager or applicative
evaluation):

1. First, the operator is evaluated (operator or function), then the operands (arguments),

2. Second, the operator function is called with the arguments

Note that this startegy is simple because it is defined by recursion.

Evaluation rules of atomic expressions:

1. Values of constants are the values which they stand for,

2. Built in operators (functions) activate the correspondingnative operations

3. Values of names are the values which they are bound in the current environment

Remark: 2. is only a special case of 3.

Példa:
(2+4*6)*(3+5+7) = op*(op+(2,op*(4,6)),op+(op+(3,5),7) )
Expressions can be represented as trees, (see Logic Programming).

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-15

Anonymous functions, lambda notation, defining functions

Anonymous function withλ notation: ex.(fn x => x*x)
Applying an anonymous function: pl.(fn x => x*x) 2

The fn symbol is calledlambda.

x is the formal parameter of the function (local name).

x*x is the body of the function.

2 is the argument (actual parameter) of the function.

Giving name to a function (function declaration):

val square = fn x => x * x

val sumOfSquares = fn (x, y) => square x + square y

val f = fn a => sumOfSquares(a+1, a*2)

Functions defined by the user can be used the same way as built-in functions.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-16

Further examples on defining functions in SML

Function to produce the successive elements of the 2 bit 1 Hamming-distance code.

We can define the function with a table: 0001 fn 00 => 01
01 11 | 01 => 11
11 10 | 11 => 10
10 00 | 10 => 00

Variants („clauses”): one variant for each case.

The fn (read:lambda) constructs an (anonymous)function expression.

Some uses of the function:

(fn 00 => 01 | 01 => 11 | 11 => 10 | 10 => 00) 10

(fn 00 => 01 | 01 => 11 | 11 => 10 | 10 => 00) 11

(fn 00 => 01 | 01 => 11 | 11 => 10 | 10 => 00) 111

Pattern-match: one-way unification

Easily understandable, but not robust: the function is partial (not defined on every element of the
domain)

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-17

Further examples on defining functions in SML

Incrementing integers modulon (ex.n = 5)

A function is usually defined with an algorithm, not a table, to avoid too much variants.

fn i => (i + 1) mod 5

i is the formal parameter, orbound variable

A few uses:

(fn i => (i + 1) mod 5) 2

(fn i => (i + 1) mod 5) 4

(fn i => (i + 1) mod 5) 3.0 – Error!

This function could be defined with two clauses:
fn 4 => 0 | i => i + 1

The order is important: SML (unlike Prolog) uses only the first matching clause!

The second version of the function is not robust. Which one isbetter?

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-18

Binding a name to a function value (declaring function values)

We have seen that names can be bound to function values the same way as to any other values.

val nextCode = fn 00 => 01 | 01 => 11 | 11 => 10 | 10 => 00

val incMod = fn 4 => 0 | i => i + 1

With syntactic sweetener (fun ):

fun nextCode 00 = 01
| nextCode 01 = 11
| nextCode 11 = 10
| nextCode 10 = 00

fun incMod 4 = 0
| incMod i = i + 1

Applying them on some arguments

nextCode 01

incMod 4

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-19

Head comment

Let’s write declarativehead commentfor all our functions!

(* nextCode cc = the next element of the 2-bit 1-Hamming dista nce
cyclic code (subsequent to cc)

PRE: cc ∈ {00, 01, 11, 10}
*)
fun nextCode 00 = 01

| nextCode 01 = 11
| nextCode 11 = 10
| nextCode 10 = 00

PRE= precondition

PRE: cc ∈ {00, 01, 11, 10} means: thenextCode function’scc argument must be in
the set{00, 01, 11, 10} , else the result is undefined.

(* incMod i = (i+1) modulo 5
PRE: 5 > i >= 0

*)
fun incMod i = (i+1) mod 5

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-20

Function as a value

Functions are „first-class citizens” in a functional language: they can freely be passed to other
functions, returned as the result of functions, stored in data structures, and so on.

The type of a function value is:α→ β, whereα is the type of the argument,β is the type of
the result.

The function itself is a value:function value

Important: the function value is NOT the result of theapplicationof the function!

Examples:

sin (type: real→ real)
round (type: real→ int)
◦ (function composition; type:((β → γ) ∗ (α→ β))→ (α→ γ))

Examples for function application:

round 5.4 = 5, so the result of the application of the function is of typeint

round ◦ sin (type: real→ int)
(round ◦ sin)1.0 = 1 (type: int)

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-21

Functions with two or more arguments

Functions always have only one argument, but:

1. We can use compound arguments: pairs, records, list, etc.

ex.f (1, 2) is thef function applied to thepair (1, 2)

ex.f [1, 2, 3] is thef function applied to thelist [1, 2, 3]

2. OR we can apply the function in several successive steps to arguments:
ex.f 1 2 ≡ (f 1) 2 means that

in the first step, we applyf to 1, which results in a function
in the second step, we apply the result function(f 1) to 2 and we get the result of(f 1) 2

In f 1 2, f is apartially applicablefunction

It is the programmer’s choice to write a function with compound argument, or as a partially
applicable function. The difference is only in the syntax (f (1, 2) <=> f 1 2). As we will see
later, partially applicable functions are more flexible: they can be applied on some subset of their
arguments.

Infix notation:x⊕ y ≡ the application of the function⊕ to the pair(x, y) as argument.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



ABSTRACTION WITH FUNCTIONS AND PROCESSES



FP-I-23

Application of functions in SML

In SML the function namef and its argumente can be any expressions, which must be separated:
f e , or f(e) , or (f)e , or (f)(e)

Separator: zero, one or moreformatting characters(⊔, \t, \n etc.). No formatting character can be
used only if using parentheses (i.e. before „(” or after a „)”).

Important: the separator is the strongest operator which binds to the left.
ex. f 1+2 ≡ (f 1)+2 , f 1 2 ≡ (f 1) 2 !!!

Examples:

Math.sin 1.00 (Math.cos)Math.pi round(3.17)
2 + 3 (real) (3 + 2 * 5)

Classifying functions in SML:

Built-in functions, ex.+, * (both infix), real , round (both prefix)

Library functions, ex.Math.sin , Math.cos , Real.fromInt

User-defined functions, pl.square , /\ , head

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-24

Evaluating Function Applications

An expression with user-defined functions is evaluated similarly to other compound expressions.
When we defined that evaluation, de assumed that SML „knows” how to apply functions to arguments.
Now we define how SML applies functions:

All occurences of the formal parameters in the function bodyare replaced by the corresponding
arguments, then

the function call is replaced with the result of the evaluation of the prepared body

Let’s see howf 5 is evaluated. Each step, a sub-expression is replaced by an equivalent expression.

f 5 → sumOfSquares(5+1, 5*2) → sumOfSquares(6, 5*2) →
sumOfSquares(6, 10) → square 6 + square 10 → 6*6 + square 10 →
36 + square 10 → 36 + 10*10 → 36 + 100 → 136

(val sumOfSquares = fn (x, y) => square x + square y ; val square = fn x => x * x )
Thissubstitution model– equals replaced by equals– helps understanding how function application
works. This model is applicable if the meaning of a function is always independent from its
environment.
Interpreters/compilers usually work with other, more complex – more efficient – models.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-25

Applicative order (eager evaluation), normal order (lazy evaluation)

When evaluating compound expressions, SML first evaluates the operator, then the arguments,
then calls the operator function with the arguments. This order is calledapplicative orderor eager
evaluation

There are other ways, too. The most important is, when we postpone the evaluation of
sub-expressions as long as possible. The evaluation of a sub-expression is needed when it is an
argument of a built-in operator or when it is needed for pattern matching in a user-defined
function, and of course, the function itself is also needed.This is callednormal orderor
call-by-needor lazy evaluation.

Let’s see howf 5 is evaluated when using normal order evaluation.
f 5 → sumOfSquares(5+1, 5*2) → square(5+1) + square(5*2) →
(5+1)*(5+1) + (5*2)*(5*2) → 6*(5+1) + (5*2)*(5*2) → 6*6 + (5*2)*(5*2)
→ 36 + (5*2)*(5*2) → 36 + 10*(5*2) → 36 + 10*10 → 36 + 100 → 136

It is proven that for functions, for which the substituion model is applicable, these two strategies
lead to the same result.

Note that when using lazy evaluation, some sub-expressionsmust be evaluated multiple times.

Compilers/interpreters help this situation with aliasing(references): identical sub-expressions
aren’t copied, only referenced: when one occurance is evaluated, so do the others.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-26

Conditional expressions, boolean operators, predicates

Type name:bool . Data constructors:false , true . Built-in function: not .

lazybuilt-in operators (special language constructs)

With three parameters:if b then e1 else e2 .
It doesn’t evaluatee2 , if b evaluates totrue , and doesn’t evaluatee1 otherwise.

With two parameters:
e1 andalso e2 : doesn’t evaluatee2 , if e1 is false .
e1 orelse e2 : doesn’t evaluatee2 , if e1 is true .

All three operators are just syntactic sweeteners:

if b then e1 else e2 ≡ (fn true => e1 | false => e2) b

e1 andalso e2 ≡ (fn true => e2 | false => false) e1

e1 orelse e2 ≡ (fn true => true | false => e2) e1

Typical error:if exp then true else false

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-27

Conditional expressions, boolean operators, predicates

Let’s see some examples.

val absolute = fn x => if x < 0 then ~x
else if x > 0 then x
else 0

val absolute = fn x => if x < 0 then ~x
else x

use "sumOfSquares.sml";

val sumOfSquaresOfTwoLarger =
fn (x,y,z) =>

if x < y andalso x < z then sumOfSquares(y, z)
else if y < x andalso y < z then sumOfSquares(x, z)
else sumOfSquares(x, y);

Predicateis a function which’s return value isbool . Example:

val isAlphaNum = fn c =>
#"A" <= c andalso c <= #"Z" orelse
#"a" <= c andalso c <= #"z" orelse
#"0" <= c andalso c <= #"9"

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-28

Conditional expressions, boolean operators, predicates

Trivial: andalso andorelse can be expressed withif-then-else :

if e1 then e2 else false ≡ e1 andalso e2

if e1 then true else e2 ≡ e1 orelse e2

Let’s useandalso andorelse instead ofif-then-else where applicable, it makes the
code more readable.

In SML, user-defined functions can’t belazy. SML always evaluates the arguments before calling
a function.

Eager equivalents ofandalso andorelse :

(* && (a, b) = a /\ b
&& : bool * bool -> bool

*)
fun op&& (a, b) = a andalso b;
infix 2 &&

(* || (a, b) = a \/ b
|| : bool * bool -> bool

*)
fun op|| (a, b) = a orelse b;
infix 1 ||

infix prec name1 name2 ... : turnsname1 name2 ... functions toinfix operators
with prec precedence and binding to the left.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-29

Calculating square roots with Newton’s method

Functions in a functional languages are similar to functions in mathematics: they return values
depending on the values of one or more arguments. There is a big difference: functions in
functional languages must be efficiently computable.

Let’s see the definition of the square root function in math:
√

x = y, wherey ≥ 0 andy2 = x.

This equation system is adequate for checking whether a number is a square root of another, but is
it adequate for computing square roots?

Functions in mathematics declare a property, functions in functional languages also tell,how to
producethe value. That is, declarative programming is declarativeonly when compared to
imperative programming (WHAT?<=> HOW?).

A well-known method for computing square roots isSuccessive Approximation: If y is an
approximation for the square root ofx, then the average ofy andx/y is a better approximation.
The process produces successive approximations of

√
x and stops when the approximation is

considered good enough.

Let’s write this algorithm in SML.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-30

Calculating square roots with Newton’s method

val rec sqrtIter =
fn (guess, x) => if goodEnough(guess, x)

then guess
else sqrtIter(improved(guess, x), x)

Therec keyword means that the value declaration isrecursive: the declared value (name) will be
used in its own declaration.

Our strategy is a good example for top-down design. In the beginning, we don’t care about details,
we assume that everything we need is already available, and we implement them later.

So, we have to define a few details:

val improved = fn (guess, x) => average(guess, x/guess)
val average = fn (x, y) => (x+y)/2.0
val goodEnough = fn (guess, x) => abs(square_r guess - x) < 0.0 01
val square_r = fn (x : real) => x * x

Finally, we have to call outsqrIter function with an initial approximation value:

val sqrt = fn x => sqrtIter(1.0, x);

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-31

Calculating square roots with Newton’s method

Unfortunately, the order of declarations is not adequate: SML requires that the definition of names
must precede their first use. (This is not required in some (lazy) functional languages!!!)

We could reverse the order of our declarations, but then the code wouldn’t reflect our design, our
way of thinking.

We can usesimultaneous declaration, which means, that several declarations are grouped
together: read simultaneously, then processed simultaneously. The names declared together are
separated by theand keyword.

val rec sqrtIter =
fn (guess, x) => if goodEnough(guess, x)

then guess
else sqrtIter(improved(guess, x), x)

and improved = fn (guess, x) => average(guess, x/guess)
and average = fn (x, y) => (x+y)/2.0
and goodEnough = fn (guess, x) => abs(square_r guess - x) < 0.0 01
and square_r = fn (x : real) => x * x
val sqrt = fn x => sqrtIter(1.0, x)

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-32

Calculating square roots with Newton’s method

Up to this point, our abstraction methods (name giving for names and functions) are useful for
handling complex things as units, but aren’t useful in hiding details.

There are several language constructs for hiding details. The most essential is the „expression with
local declal declaration”, or simply „let -expression”,

The let -expression is used also for defining (and evaluating) recurring expressions only once.

Syntax: let d
in e
end

where d is a non-empty declaration-sequence,

e is a non-empty expression.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-33

Calculating square roots with Newton’s method

fun sqrt x =
let fun sqrtIter (guess, x) =

if goodEnough(guess, x) then guess
else sqrtIter(improved(guess, x),x)

and improved (guess, x) = average(guess, x/guess)
and average (x, y) = (x+y)/2.0
and goodEnough (guess, x) = abs(square_r guess - x) < 0.001
and square_r (x : real) = x * x

in
sqrtIter(1.0, x)

end

In SML the scope and visibility rules are similar to the rulesin other languages

For example, thex formal parameter of thesqrt function is visible in the functions defined
insidesqrt , unless they’re covered by a localx name.x is used everywhere insidesqrt as a
global name.

Remark: the:real type constraintcould be omitted: SML can derive the type from the
environment.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-34

Calculating square roots with Newton’s method

(* A simplified variant: *)
fun sqrt x =

let fun sqrtIter guess = if goodEnough guess
then guess
else sqrtIter(improved guess)

and improved guess = average(guess, x/guess)
and average (x, y) = (x+y)/2.0
and goodEnough guess = abs(square_r guess - x) < 0.001
and square_r x = x * x

in
sqrtIter 1.0

end;

With giving meaningful names to parts of the program, it bacame simpler and easier to understand.
With separation of concerns,

programming,

understanding (for future readers),

modifying became easier.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-35

Procedures (functions) and processes

Procedures (functions) are patterns, which define, what thecomputations do, define the local
behaviour of the processes.

The global behaviour of a process (number of steps, execution time, space consumed) is more
difficult to guess.

Linear recursion and iteration

Simply transforming the mathematical definition of the factorial function to SML gives:

0! = 1

n! = n(n− 1)!

(* PRE : n >= 0 *)
fun factorial 0 = 1

| factorial n = n * factorial(n-1)

If we apply oursubstitution model, we can see that the process produces and stores all the
numbers betweenn and1, before executing the first multiplication, it postpones the
multiplications. This is a linear recursive process.

Instead of this, we could multiply1 with 2, then the partial result with3, then with4, and so on,
when reachingn, the last partial result would ben!. For this, we need an auxiliary formal
parameter (or a local variable in imperative languages), which stores the current partial result, and
another, which counts from1 to n. This would be a linear iterative process.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-36

Linear recursion and iteration

fun factorial n =
let fun factIter (product, counter) =

if counter > n
then product

else factIter(product*counter, counter+1)
in

factIter(1, 1)
end

We get a simpler, clearer version offactIter , if we decrement the counter fromn

(* PRE : n >= 0 *)
fun factorial n =

let fun factIter (product, 0) =
product

| factIter (product, counter) =
factIter(product*counter, counter-1)

in
factIter(1, n)

end

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-37

Linear recursion and iteration

Linear recursive version:

factorial 5
5*factorial 4
5*(4*factorial 3)
5*(4*(3*factorial 2))
5*(4*(3*(2*factorial 1)))
5*(4*(3*(2*(1*factorial 0))))
5*(4*(3*(2*(1* 1 ))))
5*(4*(3*(2* 1 )))
5*(4*(3* 2 ))
5*(4* 6 )
5* 24
120

Linear iterative version:

factIter (1 ,5)
factIter (1 *5,4)
factIter (5 ,4)
factIter (5 *4,3)
factIter (20 ,3)
factIter (20 *3,2)
factIter (60 ,2)
factIter (60 *2,1)
factIter (120 ,1)
factIter (120 *1,0)
factIter (120 ,0)
120

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-38

Procedures (Functions) and Processes

Don’t mix recursive processes and recursive procedures (functions).

In the case of a recursive function, it is a matter of sintax: the function calls itself.

In the case of a recursive process, we are talking about how the computation is executed.

If the function isright-recursive (tail-recursive, terminal-recursive)the generated process can be
iterative (depending on the goodness of the interpreter/compiler).

We’ll return to the topic of „abstraction with functions”, but now we switch topic: we study the
concept ofparametric polymorhpism, and a polymorph data structure, the list.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



POLYMORPHISM



FP-I-40

Polymorphism

Let’s examine the identity function:fun id x = x

What is the type ofx? It can be of any type, its type is denoted by atype variable:
Moscow ML:val ’a id = fn : ’a -> ’a
SML/NJ:val id = fn : ’a -> ’a

id is apolymorphfunction,x andid are poly-typed names.

Names beginning with an apostrophe are type names, and the one-letter type names are
pronounced as the corresponding greek letter (ex.’a , alpha).

Let’s examine the equality function:fun eq (x, y) = x = y .

What are the types ofx andy? val ”a eq = fn : ”a * ”a -> bool .

Names beginning with two apostrophes are equality-typenames, they stand for types which can be
checked for equality.

The atomic data types are equality types, except forreal , and compound data types containing
only equality types are equality types. Function types aren’t equality types.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-41

Types of Polymorphism

Polymorphism shows up in different forms in programming:

If a polymorph name denotes one single algorithm which can beused on arguments of any type, it
is parametric polymorphism.

If an overloadedname denotes several different algorithms: one algorithm for each type it is
defined for, it isad-hocor overloaded polymorphism.

A third variation ispolymorphism via inheritence(see object oriented programming).

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



LISTS



FP-I-43

List: definition, data- and type-constructors

Definition

1. A list is a finite sequence of elements having the same type.

2. A list is a linear recursive data structure, which can be

empty,
the first element and the list of the other elements.

Constructors

The empty list is denoted by thenil name, which is adata constructor constant.

We usually use the[] symbol instead ofnil (syntactic sugar).

The type ofnil is: ’a list .

’a is a type variable, list is atype constructor function.

The :: name is adata constructor function(or adata constructor operator).
It creates a new list from an element and a (possibly empty) list.

The type of:: is: ’a * ’a list -> ’a list .
It is an infix operator, having precedence 5, binding to the right.

The :: name is pronouncedfour-dots(or cons(constructor) for historical reasons).

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-44

List: notation, patterns

Examples

Creating lists with data constructors:

nil #"" :: nil
3 :: 5 :: 9 :: nil = 3 :: (5 :: (9 :: nil))

Syntactic sweetener for lists:

[] = nil
[3, 5, 9] = 3 :: 5 :: 9 :: nil

Caution! Prolog’s list notation is similar, but there are differences:
SML Prolog SML Prolog
[] [] same (x::xs) [X|Xs] different
[1,2,3] [1,2,3] same (x::y::ys) [X,Y|Ys] different

Patterns

Expressions built with[] andnil data constructor constants and with the:: data constructor
operator, and the[x1, x2, ..., xn] list-notation can be used in patterns (in the head of
functions).

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-45

List: head (hd), tail (tl )

The first element of a (non-empty) list is itshead.

(* hd : ’a list -> ’a
hd xs = first element of the non-empty list xs (head of xs)

*)
fun hd (x :: _) = x;

The list containing the elements of a list, after the first (its tail).

(* tl : ’a list -> ’a list
tl xs = the list containing all elements of the list xs

but the first one (the tail of x)
*)
fun tl (_ :: xs) = xs;

hd andtl are partial functions. TheLists.hd andList.tl functions return anEmpty
exception when applied to empty lists.

The_ (underbar) is the so called wildcard symbol, the match-anything pattern. In contrast to
Prolog, it can only be used in function heads.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-46

Handling lists: length (length ), sum of elements (isum ), product of elements
(rprod )

The length function returns the length of a list.

(* length : ’a list -> int
length zs = the number of elements in zs *)

fun length [] = 0
| length (_ :: zs) = 1 + length zs

The isum function returns the sum of elements in an integer list.

(* isum : int list -> int
isum ns = the sum of elements in ns *)

fun isum [] = 0
| isum (n :: ns) = n + isum ns

Therprod function returns the product of elements in a real list.

(* rprod : real list -> real
rprod xs = product of elements in xs *)

fun rprod [] = 1.0
| rprod (x :: xs) = x * rprod xs;

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-47

Examples:hd , tl , length , isum , rprod

hd , tl

Expression Result of evaluation
List.hd [1, 2, 3]; > val it = 1 : int
List.hd []; ! Uncaught exception:

! Empty
List.tl [1, 2, 3]; > val it = [2, 3] : int list
List.tl []; ! Uncaught exception:

! Empty

length , isum , rprod

Expression Result of evaluation
length [1, 2, 3, 4]; > val it = 4 : int
length []; > val it = 0 : int
isum [1, 2, 3, 4]; > val it = 10 : int
isum []; > val it = 0 : int
rprod [1.0, 2.0, 3.0, 4.0]; > val it = 24.0 : real
rprod []; > val it = 1.0 : real

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-48

map: Aplying a function to each element of a list

Example: calculate the square root of each number in a list.

load "Math";
map Math.sqrt [1.0, 4.0, 9.0, 16.0] = [1.0, 2.0, 3.0, 4.0];

In general:map f [x 1, x 2, ..., x n] = [f x 1, f x 2, ..., f x n]

The definition ofmap is (map is a polymorph function):

(* map : (’a -> ’b) -> ’a list -> ’b list
map f xs = the list of elements in xs mapped by f

*)
fun map f [] = []

| map f (x :: xs) = f x :: map f xs;

The type ofmap is (because the-> type operator binds to the right!):

(’a -> ’b) -> ’a list -> ’b list ≡ (’a -> ’b) -> (’a list -> ’b list)

Themap function is apartially applicable, andhigher orderfunction: if applied to a’a -> ’b
function, results to a’a list -> ’b list function. The resulted function, when applied to a
’a list , results in a’b list .

This function is pre-defined in SML.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-49

Proving (informally) the correctness of recursive functions, withmapas an example

We have to prove that the recursive function is

functionally correct: the result is what we expect
the evaluation of the function is finite (it does not fall in an„infinite recursion”)

The proof is with structural induction by length (similar tomathematical induction)

fun map f [] = []
| map f (x :: xs) = f x :: map f xs

Let’s assume thatmapworks for lists of lengthn− 1. (tail of the list,xs )
Let’s applyf to the first element of the list. (head of the list,x )
Let’s build a new list fromf x andmap f xs

The result is what we expected, we have proven that if the function works for lists of length
n− 1, then it works for lists of lengthn.
It trivially works for lists of length0.
The evaluation is finite, because

every list is finite,
When recursively callingmap, its argument is a one shorter list in every step.
The recursion is stopped when the empty list is reached.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-50

A few built-in and library functions

explode : string -> char list – the list of characters in the string

pl. explode "abc" = [#"a", #"b", #"c"]

implode : char list -> string – the string made of the characters in the list

pl. implode [#"a", #"b", #"c"] = "abc"

Variants ofmap, which work for other compound structures. Examples:

String.map : (char -> char) -> string -> string

Vector.map : (’a -> ’b) -> ’a vector -> ’b vector

In theChar library, we can find many usefulpredicatefunctions. Examples:

Char.isLower : char -> bool – true for the lower case letters of the alphabet

Char.isSpace : char -> bool – true for the formatting characters

Char.isAlpha : char -> bool – true for letters of the alphabet

Char.isAlphaNum : char -> bool – true for letters of the alphabet and for numbers

Char.isAscii : char -> bool – true for characters having ASCII code smaller than
128

pl. Char.isSpace #"\t" = true; Char.isAlphaNum #"!" = false

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-51

filter : elements of the list that satisfy a predicate

Example: Collect the lower case letters from a string.

List.filter Char.isLower (explode "AlTeRnAtInG") = [#"l" ,#"e",#"n",#"t",#"n"];

In general, ifp x 1 = true , p x 2 = false , p x 3 = true , . . . , p x 2k+1 = true ,

thenfilter p [x 1, x 2, x 3, ..., x 2k+1] = [x 1, x 3, ..., x 2k+1] .

The definiton offilter :

(* filter : (’a -> bool) -> ’a list -> ’a list
filter p zs = The elements of zs satisfying p

*)
fun filter _ [] = []

| filter p (x :: xs) =
if p x then x :: filter p xs else filter p xs;

The type offilter (a -> binds to the right!):

filter : (’a -> bool) -> ’a list -> ’a list .

That is, if filter is applied to a’a -> bool function (an’a predicate), results in a
(’a list -> ’a list) function, which when applied to an’a list , results in an
’a list .

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-52

Finding the maximal element in a list

The empty list does not have a maximal element,

The maximal element in a one-element-list is the only element,

The maximal element of a list having at least two elements is:

The maximum of the first element and the maximal element in thetail of the list
load "Int";
(* maxl : int list -> int

maxl ns = The maximal
element in ns

*)
fun maxl [] = raise Empty

| maxl [n] = n
| maxl (n::ns) = Int.max(n, maxl ns)

max a variant for integers:

(* max: int * int -> int
max (n,m) =
the maximum of n and m

*)
fun max (n,m) = if n>m

then n
else m

The maximal element in the list with the smaller of the first two elements removed

fun maxl’ [] = raise Empty
| maxl’ [n] = n
| maxl’ (n::m::ns) = maxl’(Int.max(n,m)::ns)

Unlike in maxl , here the order of clauses is unimportant (the patterns are disjunct).
maxl’ is tail-recursive, its space consumption is constant.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-53

Finding the maximal element in a list

How can we makemaxl a polymorph function? We define it as agenericfunction: It has an extra
parameter, the function which choses the maximum of two elements.

(* maxl : (’a * ’a -> ’a) -> ’a list -> ’a
maxl max zs = the maximal element in zs, according to max

*)
fun maxl max [] = raise Empty

| maxl max [z] = z
| maxl max (z::zs) = max(z, maxl max zs)

max is always the same, even so we give it as an argument in each recursive call. We can improve
efficiency (in some implementations), if we use a let-expression:

fun maxl max zs = let fun mxl [] = raise Empty
| mxl [y] = y
| mxl (y::ys) = max(y, mxl ys)

in
mxl zs

end

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-54

Variations ofmax

Variations ofmax

(* charMax : char * char -> char
charMax (a, b) = the maximum of a and b

*)
fun charMax (a, b) = if ord a > ord b then a else b;

or simply withoutord :

fun charMax (a : char, b) = if a > b then a else b;

(* pairMax : ((int * real) * (int * real)) -> (int * real)
pairMax (n, m) = lexicografically greater of n and m

*)
fun pairMax (n as (n1 : int, n2 : real), m as (m1, m2)) =

if n1 > m1 orelse n1 = m1 andalso n2 >= m2 then n else m;

(* stringMax : string * string -> string
stringMax (s, t) = the greater of s and t

*)
fun stringMax (s : string, t) = if s > t then s else t;

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-55

Concatenating (append ) and revesring (nrev ) lists

Concatenation of two lists (append function, or infix operator@)

[x1, . . . , xm]@[y1, . . . , yn] = [x1, . . . , xm−1]@(xm::[y1, . . . , yn]) = . . . = [x1, . . . , xm, y1, . . . , yn]

First, we decomposexs to its elements, then we append the elements toys backwords, starting
from the end ofxs , because lists can be built on the left. Number of steps:O(n).

(* append : ’a list * ’a list -> ’a list
append(xs, ys) = all elements of xs prepended to ys *)

fun append ([], ys) = ys
| append (x::xs, ys) = x::append(xs, ys)

Naive reverse of a list (nrev )

nrev[x1, x2, . . . , xm] = nrev[x2, . . . , xm]@[x1] = nrev[. . . , xm]@[x2]@[x1] = . . . = [xm, . . . , x1]

We append the first element as a one-element list to the end. The number of steps:O(n2).

(* nrev : ’a list -> ’a list
nrev xs = reverse of xs *)

fun nrev [] = []
| nrev (x::xs) = (nrev xs) @ [x]

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-56

Reversing lists: example for usingnrev

Example for evaluatingnrev :

The operators:: and@bind to the right, have precedence of 5.

fun nrev [] = []
| nrev (x::xs) = (nrev xs) @ [x]

fun [] @ ys = ys
| (x::xs) @ ys = x :: xs @ ys (* = (x :: xs) @ ys *)

nrev([1,2,3,4]) → nrev([2,3,4])@[1] → nrev([3,4])@[2]@[1]

→ nrev([4])@[3]@[2]@[1] → nrev([])@[4]@[3]@[2]@[1]

→ []@[4]@[3]@[2]@[1] → [4]@[3]@[2]@[1]

→ 4::[]@[3]@[2]@[1] → 4::[3]@[2]@[1])

→ [4,3]@[2]@[1]) → 4::([3]@[2])@[1])

→ []@[4]@(3::[2,1] → []@[4]@[3,2,1] → . . .

nrev isn’t efficient: the number of steps isO(n2).

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-57

Appending and reversing lists (revApp andrev )

Appending the elements of a list in front of another, in reverse order (revApp )

(* revApp : ’a list * ’a list -> ’a list
revApp(xs, ys) = the elements of xs in reverse order and ys

*)
fun revApp ([], ys) = ys

| revApp (x::xs, ys) = revApp(xs, x::ys)

The number of steps forrevApp is proportional to the length of the list. With its help, we can
implementrev :

(* rev : ’a list -> ’a list
rev xs = xs reversed

*)
fun rev xs = revApp (xs, [])

A list having 1000 elements is reversed in1000 steps byrev and in1000·1001
2

= 500500 steps by
nrev .

append – @as an infix operator – andrev are available as built-in functions.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



COMPOUND DATA STRUCTURES



FP-I-59

Record and n-tuple

From two different types, we can form a record or a pair. ex:

{x = 2, y = 1.0} : {x : int, y : real} and(2, 1.0) : (int * real)

A pair is just syntactic sweetener. ex:

(2, 1.0) ≡ {1 = 2, 2 = 1.0} ≡ {2 = 1.0, 1 = 2} 6= {1 = 1.0, 2 = 2} .

In a pair, the order of fields is important!1 and2 are field names.

We can form a record with more than two values. ex:

{name = "Bob", tel = 3192144, age = 19} :

{age : int, name : string, tel : int}

And similar record with numbers as field names:

{1 = "Bob", 3 = 3192144, 2 = 19}: {1 : string, 2 : int, 3 : int}

The latter is equivalent of the followingn-tuple

("Bob", 19, 3192144) : (string * int * int)

that is

(string * int * int) ≡ {1 = string, 2 = int, 3 = int}

In a record, the order of fields is unimportant, the fields are identified by the field names. In an
n-tuple, the order is important, fields are identified by their position.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



WEAK AND STRONG ABSTRACTION



FP-I-61

Data types: weak and strong abstraction

Weak abstraction: the name is just a synonim, the parts of thedata structure are still visible and
available

Strong abstraction: the name denotes a new entity (object),availability of the parts of the data
structures is limited

type : weak abstraction; ex:type rat = {num : int, den : int}

Gives a new name to a type expression (compare with value declaration).

Helps reading the program.

datatype : in combination with modules: strong abstraction

ex: datatype rat = Rat of {num : int, den : int}

Creates a new entity.

Can be recursive and polymorph.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-62

Data types: enumerated and polymorph types withdatatype declaration

datatype answer = Yes | No
datatype answer3 = yes | no | maybe
datatype ’a option = NONE | SOME of ’a

Enumerated type.
Enumerated type.
Polymorph type.

The new entities:Yes,No, yes , no , maybe, NONEare values,data constructor (constant)s.
SOMEis data constructor function. Data constructors are in the samenamespaceas the other
(value) names.

The new entities:answer andanswer3 aretype constructor (constant)s. option is a type
constructor function (postfix operator). Type constants (answer ) and type functions applied to
other types (int option , ’a option ) are type expressions. Type constructors are in a
differentnamespaceas value names.

Of course, data constructors have a type as well. ex:

Yes : answer
No : answer

NONE : ’a option
SOME : ’a -> ’a option

Example for function handling a user-defined datatype:

fun invert No = Yes | invert Yes = No

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



WORTH TO MENTION



FP-I-64

Worth to mention

Unit value and type

The() or {} symbol is a0-tuple, its type isunit . The0-tuple is the only value of the type
unit . Theunit type is the unit element of type operations.

Theprint function

If the print function (string -> unit ) when applied to astring , the result is a
0-tuple , and a side effect is that the string is written to the standard output.

The(e1;e2;...;en) sequential expression’s result is the value ofen . If e1 , e2 , ... have side
effects, it will be carried out.(e1; e2; e3) is equivalent to the followinglet -expression:

let val _ = e1 val _ = e2 in e3 end

The value of thee1 before e2 ... before e3 expression is equivalent to thr value of
e1 . If e1 , e2 , ... have side effects, it will be carried out.e1 before e2 before e3 is
equivalent to the followinglet -expression:

let val e = e1 val _ = e2 val _ = e3 in e end

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



ABSTRACTION WITH FUNCTIONS



FP-I-66

Tree recursion

So far, we have met linear recursive and linear iterative processes (calculating factorials in several
ways).

Now let’s see examples fortree recursion: let’s generate the sequence of Fibonacci-numbers.

A Fibonacci-number is the sum of the two previous Fibonacci-numbers:

0, 1, 1, 2, 3, 5, 8, 13, 21, ...

The definition of Fibonacci-numbers can be easily transformed into an SML function:

F (0) = 0

F (1) = 1

F (n) = F (n− 1) + F (n− 2), if n > 1

fun fib 0 = 0
| fib 1 = 1
| fib n = fib(n-1) + fib(n-2)

Remember: the third clause of thefib function must be the last, because then pattern matches
anything.

A recursive function (procedure) with more than one recursive call is calledtree recursion.

The figure on the next slide will show how this tree-recutsivefunction evaluated.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-67

Tree recursion

We getfib 5 with calculatingfib 4 andfib 3 , fib 4 with fib 3 andfib 2 and so on.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-68

Tree recursion

The previous program is good for introducing tree recursion, but almost totally unusable for
generating Fibonacci-numbers.

Note that for example we calculatedfib 3 two times, doing about the third of the work
unnecessarely.

It can be proven that forF (n), a tree with exactlyF (n + 1) leafs must be fully explored, where the
leafs are theF (0) andF (1) calls.

F (n) is an exponential function ofn. To be more precise,F (n) is an integer close toΦn/
√

5,
whereΦ = (1 −

√
5)/2 ≈ 1.61803, the so calledgolden sectionratio number.Φ satisfies the

Φ2 = Φ + 1 equation.

The number of required steps grows togerher withF (n), exponentially withn. In the meanwhile,
the memory consumed is only proportional ton, because only one root-leaf path has to be kept in
memory.

In general, it is true that the number of steps is proportional to the leafs and nodes of the tree,
while the memory usage is only proportional to the maximal depth of it.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-69

Tree recursion

Fibonacci-numbers can be generated by a linear-iterative process.

If there area andb variables with initial valuesF (1) = 1 andF (0) = 0 respectively, and we
iteratively apply thea← a + b andb← a transformations, aftern iterations,a = F (n + 1) and
b = F (n) will hold.

It is an imperative algorith, which is straightforward to implement in imperative languages. Let’s
see how it can be implemented in SML.

fun fib n = let fun fibIter (i, b, a) =
if i = n

then b
else fibIter(i+1, a, a+b)

in
fibIter(0, 0, 1)

end

Note that the transformation is the same straigtforward: loops (iterations) are (tail-)recursive
auxiliary functions, local variables are parameters of thefunctions, initial values appear as
arguments of the auxiliary functions.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-70

Tree recursion

Pattern matchingcan be used if we decrementi from n to 0.

fun fib n = let
fun fibIter (0, b, a) = b

| fibIter (i, b, a) = fibIter(i-1, a, a+b)
in

fibIter(n, 0, 1)
end

Warning: the order of clauses is important, as the pattern aren’t disjunct.

Note that in contrast to imperative style, the place where the "variables" are "changed" is strict: in
the recursive function call. In an iteration in an imperative language, you can scatter your variable
assignments anywhere in the loop, and if a variable is unchanged, then there is no point where this
can be seen: the absence of the assignment is hard to notice.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-71

Tree recursion

In the Fibonacci-example, the numer of steps was exponential to n in the tree-recursion example,
and was proportional ton in the linear-iterative version.

It would be a mistake to conclude that tree recursion is useless. When dealing with hierarchical
data structures, for example, working with trees, tree recursion is natural and useful.

Tree recursion can be also useful when impementing a first version of the solution for a problem:
it is easy to implement, easy to reason about the program.

In our example, it was easy to transform the mathematical definition to a program, and after
examined and understood, was easy to change it to become efficient, too. Tree recursion helps
understanding a problem and solution.

There was a need for only a small idea to transform our programto iterative.
For this example, it isn’t that simple:

How many ways can you change one dollar to 50-, 25-, 10-, 5- and1-cent coins?

In general: How many ways can you change a given amount of money to given coins?

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-72

Tree recursion: changing money

Let’s assume that we haven different type of coins, in a descending order. Then the number of ways
in we can changea dollars is, we calculate

how many ways we can changea without using the first (the biggest) coin (having valued), and
we add

how many ways we can changea− d with all the coins we have. In other words: how many ways
we can changea in such a way that we use the first coin at least once.

This problem can be solved by recursion, as the problem can bereduced to smaller problems:
changing smaller amount of money with less coins. The base cases can be the following:

If a = 0, the number of ways is 1.

(If we have 0 dollars, it can be changed only one way: with 0 coins)

If a < 0, the number of ways is 0.

If n = 0, the number of ways is 0.

In our example, we implemented thefirstDenomination function with enumeration.
It would be more flexible to implement it with using a list.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-73

Tree recursion: changing money

fun countChange amount =
let (* cC amount kindsOfCoins = the number of ways amount can b e changed with

using kindsOfCoins coins *)
fun cC (amount, kindsOfCoins) =

if amount < 0 orelse kindsOfCoins = 0 then 0
else if amount = 0 then 1
else cC (amount, kindsOfCoins - 1) +

cC (amount - firstDenomination kindsOfCoins, kindsOfCoin s)
and firstDenomination 1 = 1

| firstDenomination 2 = 5
| firstDenomination 3 = 10
| firstDenomination 4 = 25
| firstDenomination 5 = 50

in
cC(amount, 5)

end;

countChange 10 = 4; countChange 100 = 292;

Practice:

ChangefirstDenomination function to have the values of coins in a list.

ChangecC function to use pattern matching.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-74

Exponents

In processes seen so far, the number of evaluation (execution) steps grew linearly, or exponentially
with n, the number of data units. In the next example, the number of steps is proportional to the
logarithm ofn.

The definition ofb raised to the power ofn is also easy to transform into SML.

b0 = 1

bn = b · bn−1

fun expt (b, 0) = 1
| expt (b, n) = b * expt(b, n-1)

The outcome process is linear recursive. Execution requiresO(n) steps and memory of sizeO(n).

It is similarly easy to write the linear iterative version.

fun expt (b, n) =
let fun exptIter (0, product) = product

| exptIter (counter, product) =
exptIter (counter-1, b * product)

in
exptIter(n, 1)

end

Execution requiresO(n) steps and memory of sizeO(1) i.e. constant.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-75

Exponents

Fewer steps suffice, provided we take advantage of the equations below:

b0 = 1

bn = (bn/2)2, if n is even
bn = b · bn−1, if n is odd

fun expt (b, n) =
let fun exptFast 0 = 1

| exptFast n =
if even n
then square(exptFast(n div 2))
else b * exptFast(n-1)

and even i = i mod 2 = 0
and square x = x * x

in exptFast n end

Steps and memory needed is proportional toO(lg n). Iterative version with constant storage req.:

fun expt (b, 0) = 1 (* Not to be omitted! Why not?*)
| expt (b, n) = let fun exptFast (1, r) = r

| exptFast (n, r) =
if even n then exptFast(n div 2, r*r)
else exptFast(n-1, r*b)

and even i = i mod 2 = 0
in exptFast(n, b) end

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



LISTS



FP-I-77

A given number of elements from the beginning and end of the list (take , drop )

Let xs = [x0, x1, . . . , xi−1, xi, xi+1, . . . , xn−1], then

take(xs, i) = [x0, x1, . . . , xi−1] anddrop(xs, i) = [xi, xi+1, . . . , xn−1].

An implementation oftake (is it tail-recursive? can it be made tail-recursive? is it robust?)

(* take : ’a list * int -> ’a list
take (xs, i) = if i < 0, xs;, if i >= 0,

list consisting of the first i elements of xs *)
fun take (_, 0) = []

| take ([], _) = []
| take (x::xs, i) = x :: take(xs, i-1)

An implementation ofdrop (is it tail-recursive? can it be made tail-recursive? is it robust?)

(* drop : ’a list * int -> ’a list
drop(xs, i) = if i < 0, xs; if i >= 0,

list obtained by leaving the first i elements of xs *)
fun drop ([], _) = []

| drop (x::xs, i) = if i > 0 then drop (xs, i-1) else x::xs

Their library versions –List.take , andList.drop – when applied to the listxs , raise an
exception namedSubscript if i < 0 or i > length xs .

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-78

Reduction of a list by dyadic operations

Let’s recall the two versions of themaxl function, which finds the maximal element of an integer list:

The version ofmaxl performing right-to-left reduction (non-tail-recursive)

(* maxl : int list -> int
maxl ns = the maximal element of the integer list ns

*)
fun maxl [] = raise Empty

| maxl [n] = n
| maxl (n::ns) = Int.max(n, maxl ns)

The version ofmaxl performing left-to-right reduction (tail-recursive)

(* maxl’ : int list -> int
maxl’ ns = the maximal element of the integer list ns

*)
fun maxl’ [] = raise Empty

| maxl’ [n] = n
| maxl’ (n::m::ns) = maxl’(Int.max(n,m)::ns)

As seen in this example, reducing a list by a dyadic operationis a recurring task.

They have in common, that we need to get one value fromn values, that’s why we’re talking about
reduction.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-79

Reduction of a list by dyadic operations (foldr , foldl )

A dyadic operation (more precisely, afunctionof prefixposition,applicable to a pair) is
performed on a list from right to left byfoldr , from left to right byfoldl . Examples for
computing sum and product:

foldr op* 1.0 [] = 1.0; foldl op+ 0 [] = 0;
foldr op* 1.0 [4.0] = 4.0; foldl op+ 0 [4] = 4;
foldr op* 1.0 [1.0, 2.0, 3.0, 4.0] = 24.0; foldl op+ 0 [1, 2, 3, 4 ] = 10;

Let⊕ denote an arbitrary dyadic infix operator. Then

foldr op ⊕ e [x 1, x 2, ..., x n] = (x 1 ⊕ (x 2 ⊕ ... ⊕ (x n ⊕ e) ...))
foldr op ⊕ e [] = e
foldl op ⊕ e [x 1, x 2, ..., x n] = (x n ⊕ ... ⊕ (x 2 ⊕ (x 1 ⊕ e)) ...)
foldl op ⊕ e [] = e

The operande of operation⊕ acts as the (right) unit element in some frequently used operations
such as addition, multiplication, conjunction (logical ”and”), disjunction (logical ”or”), etc.

In the case of associative operations, the results offoldr andfoldl are identical.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-80

Examples for usingfoldr andfoldl

isum returns the sum of an integer list,rprod returns the product of a real list.

val isum = foldr op+ 0; val rprod = foldr op* 1.0;
val isum = foldl op+ 0; val rprod = foldl op* 1.0;

The length function can also be defined byfoldl or foldr . As dyadic operation we use an
auxiliary function thatdoesn’t useits first parameter.

(* inc : ’a * int -> int
inc (_, n) = n + 1 *)

fun inc (_, n) = n + 1;

(* lengthl, lengthr : ’a list -> int *)
val lengthl = fn ls => foldl inc 0 ls;
fun lengthr ls = foldr inc 0 ls;
val lengthl = foldl inc 0;

lengthl (explode "example string");

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-81

List: The definition offoldr andfoldl

foldr op ⊕ e [x 1, x 2, ..., x n] = (x 1 ⊕ (x 2 ⊕ ... ⊕ (x n ⊕ e) ...))

foldr op ⊕ e [] = e

(* foldr f e xs = the result of the dyadic operation f with
unit element e, applied to the elements
of xs, proceeding from right to left

foldr : (’a * ’b -> ’b) -> ’b -> ’a list -> ’b *)
fun foldr f e (x::xs) = f(x, foldr f e xs)

| foldr f e [] = e;

foldl op ⊕ e [x 1, x 2, ..., x n] = (x n ⊕ ... ⊕ (x 2 ⊕ (x 1 ⊕ e)) ...)

foldl op ⊕ e [] = e

(* foldl f e xs = the result of the dyadic operation f with
unit element e, applied to the elements
of xs, proceeding from left to right

foldl : (’a * ’b -> ’b) -> ’b -> ’a list -> ’b *)
fun foldl f e (x::xs) = foldl f (f(x, e)) xs

| foldl f e [] = e;

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-82

Further examples for usingfoldr andfoldl

foldr andfoldl appends elements of one list before another when the constructor function
cons, i.e. op:: is used as the dyadic operation.

foldr op:: ys [x 1, x 2, x 3] = (x 1 :: (x 2 :: (x 3 :: ys)))

foldl op:: ys [x 1, x 2, x 3] = (x 3 :: (x 2 :: (x 1 :: ys)))

:: is not associative, so the results offoldl andfoldr are different!

(* append : ’a list -> ’a list -> ’a list
append xs ys = list obtained by appending xs before ys *)

fun append xs ys = foldr op:: ys xs;

(* revApp : ’a list -> ’a list -> ’a list
revApp xs ys = list obtained by appending

the reversed xs before ys *)
fun revApp xs ys = foldl op:: ys xs;

append [1, 2, 3] [4, 5, 6] = [1, 2, 3, 4, 5, 6]; (cf. Prolog:append )

revApp [1, 2, 3] [4, 5, 6] = [3, 2, 1, 4, 5, 6]; (cf. Prolog:revapp )

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-83

Further examples for usingfoldr andfoldl

Two implementations ofmaxl

(* maxl : (’a * ’a -> ’a) -> ’a list -> ’a
maxl max ns = maximal element of the list ns according to max

*)

(* non-tail-recursive *)

fun maxl max [] = raise Empty
| maxl max (n::ns) = foldr max n ns

(* tail-recursive *)

fun maxl’ max [] = raise Empty
| maxl’ max (n::ns) = foldl max n ns

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-84

Example for working with lists: creating runs

"Run" is a list whose adjacent elements satisfy a given condition.

The given condition is passed to the function creating the run as apredicateto be applied to the
adjacent elements.

Our task: to write an SML function that returns a list of runs composed of subsequent elements of
a list (preserving the original sequence of elements).

In the first version, we write an auxiliary function to createthe first run of a list (a prefix of the list,
which is a run), and another one to create the rest of the list.

The auxiliary functionrun has two arguments: the first one is a predicate testing the desired
condition, the second one is the list whose run prefixrun must create.

The two arguments of the auxiliary functionrest are the same as the arguments ofrun . It must
return the list it obtains by removing the first run from the list passed as the second argument.

On the next slides, the auxiliary functionsrun andrest , as well as different versions of the
functionruns can be seen.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-85

Example for using lists: creating runs (cont’d.)

First version: creating run and rest with two functions

(* run : (’a * ’a -> bool) -> (’a list) -> ’a list
run p ls = the first (prefix) run of ls satisfying p *)

fun run p (x::[]) = [x]
| run p (x::y::ys) = if p(x, y) then x :: run p (y::ys) else [x]

(* rest : (’a * ’a -> bool) -> (’a list) -> ’a list
rest p ls = the rest of ls after its run satisfying p *)

fun rest p (x::[]) = []
| rest p (x::(yys as y::ys)) =

if p(x ,y) then rest p yys else yys

(* runs1 : (’a * ’a -> bool) -> ’a list -> ’a list list
runs1 p xs = list consisting of runs of xs satisfying p *)

fun runs1 p [] = []
| runs1 p (x::xs) =

let val rns = run p (x::xs)
val rts = rest p (x::xs)

in
if null rts then [rns] else rns :: runs1 p rts

end

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-86

Example for using lists: creating runs (cont’d.)

Factors decreasing efficiency

1. runs1 goes through the list twice: firstrun , thenrest ,

2. thoughp never changes, it is passed as a parameter torun andrest ,

3. none of the functions uses an accumulator.

Ways to improve

1. run should return a pair, with the run as the first element and the rest as the second; we should
use an accumulator for collecting the elements of the run,

2. run should be local insideruns1 ,

3. the textif null rts then [rns] else can be deleted: the recursion terminates at the
next call anyway.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-87

Example for using lists: creating runs (cont’d.)

Second version: creating run and rest with one local function

(* runs2 : (’a * ’a -> bool) -> ’a list -> ’a list list
runs2 p xs = list consisting of runs of xs satisfying p

*)
fun runs2 p [] = []

| runs2 p (x::xs) =
let (* run : (’a list) -> ’a list * ’a list

run ls zs = (prefix,rest) where
prefix is the first run of ls satisfying p,
appended before zs, and rest is the rest of ls

*)
fun run (x::[]) zs = (rev(x::zs), [])

| run (x::(yys as y::ys)) zs = if p(x, y)
then run yys (x::zs)

else (rev(x::zs), yys);
val (fs, ms) = run (x::xs) []

in
fs :: runs2 p ms

end

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-88

Example for using lists: creating runs (cont’d.)

Third versoin: collecting each run and the list of runs as well

(* runs3 : (’a * ’a -> bool) -> ’a list -> ’a list list
runs3 p xs = list consisting of runs of xs satisfying p

*)
fun runs3 p [] = []

| runs3 p (x::xs) =
let (* runs : (’a list) -> ’a list -> ’a list * ’a list

runs xs zs zss = a list consisting of runs of xs
satisfying p, appended before rev(zzs),
the first run appended before rev(zs)

*)
fun runs (x::[]) zs zss = rev(rev(x::zs)::zss)

| runs (x::(yys as y::ys)) zs zss =
if p(x, y)

then runs (y::ys) (x::zs) zss
else runs (y::ys) [] (rev(x::zs)::zss)

in
runs (x::xs) [] []

end;

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)



FP-I-89

Example for using lists: creating runs (cont’d.)

Examples for applying the functions:

run op<= [1,9,19,3,4,24,34,4,11,45,66,13,45,66,99] =
[1,9,19];

rest op<= [1,9,19,3,4,24,34,4,11,45,66,13,45,66,99] =
[3,4,24,34,4,11,45,66,13,45,66,99];

runs1 op<= [1,9,19,3,4,24,34,4,11,45,66,13,45,66,99] =
[[1,9,19], [3,4,24,34], [4,11,45,66], [13,45,66,99]];

runs1 op<= [99,1] = [[99], [1]];

runs1 op<= [99] = [[99]];

runs1 op<= [] = [];

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)


