
Concurrent Elixir

i1 i2 i3 ... in

program

concurrency

multiple sequential programs
parts of a greater whole

program 1 program 2

program 3

program 4 program 5 program 6

system

web server
proxy

load balancer
database server
message queue
home automation

system

runs for a long time
does multiple things at once

non-binary success

high availability

essential for any software system

BEAM concurrency is designed for high availability

process

sequential program
runtime execution context

not an OS process (nor thread)

process A

foo(...)
bar(...)

spawn(fn ��
 # process B
 ...
end)

...

spawn(...)

... ...

process a

process b

pid = spawn(fn �� ... end)
my_pid = self()

...

send(pid, some_message)

receive do
 message ��
 do_something_with(message)
end

n = 10
caller_pid = self()

spawn(fn ��
 x = fib(n)
 send(caller_pid, {:fib, x})
end)

receive do
 {:fib, x} ��
 IO.inspect(x)
end

db_queries = [...]
caller_pid = self()

Enum.each(
 db_queries,
 fn query ��
 spawn(fn ��
 result = run_query(query)
 send(caller_pid, {:result, result})
 end)
 end
)

query 2

main

query 1 query 3
result 1 result 2 result 3

Enum.map(
 db_queries,
 fn _query ��
 receive do
 {:result, result} �� result
 end
 end
)

The bartender asks what they want.
Two threads walk into a bar.

init_mem = :erlang.memory(:total)

Enum.each(
 1..100_000,
 fn _ �� spawn(fn �� Process.sleep(:infinity) end) end
)

round((:erlang.memory(:total) - init_mem) / 1_000_000)

264 MB

BEAM

scheduler scheduler scheduler scheduler

CPU CPU CPU CPU

demo

scheduler P2 P3 P4 ... Pn
P1

scheduler P3 P4 ... Pn P1
P2

context switching

preemptive
typically every 1ms or less

=> fair distribution of CPU
stable progress of the entire system

demo

sum 1

connection sum 2

sum 3

My System

http://localhost:4000

fault tolerance

provide service in the presence of errors
self-heal as soon as possible

process crash

caused by an unhandled exception
only the affected process goes down

other processes can be notified

BEAM

demo

sum 1

connection sum 2

sum 3

My System

http://localhost:4000

understanding production behaviour

demo

distributed Elixir

terminal

$ iex ��name node1@127.0.0.1

iex(node1@127.0.0.1)1>

terminal

$ iex ��name node2@127.0.0.1

iex(node2@127.0.0.1)1>

on node2
Node.connect(:"node1@127.0.0.1")

node 1 node 2

on node2
Node.spawn(
 :"node1@127.0.0.1",
 fn ��
 IO.puts("Hello from #{node()}")
 end
)

Hello from node1@127.0.0.1

location transparency

pid may point to a remote process

process 1

process 2

process 3

process 4

node 1

node 2

node 3

concurrency == distributed programming

demo

lightweight processes
message-passing concurrency

preemptive scheduling
process isolation

termination notifications
remote shell
distribution

case study

system

source source source

My SystemMy System My System

ingestion steps

consume bytes
compose event xml
parse event xml

apply event to the model
notify connected users

store to database

tcp client

event composer

model

db writer

event parser

raw bytes

raw bytes

event xml

event structure

db records
changes

sql statements

user

user

user

tcp client

event composer

model

db writer

event parser

raw bytes

raw bytes

event xml

event structure

db records
changes

sql statements

user

user

user

message 1

message 2

message 3

message 4

message 5

db writing challenge

frequent db insertions

db writer

input rate

output rate

batching

inserting n rows at once

batcher

writer

records

batcher

writer1. I am ready

2. here's your batch

<event>
 <match id="1" ...>
 ...
 </match>

 <match id="2" ...>
 ...
 </match>

 ...

 <match id="n" ...>
 ...
 </match>
</event>

event splitter

match

db batcher

match match

tcp client

event splitter

match

db writer

match match

pubsub

match match match

user user user

subscribe(match_id)

subscribers(match_id)

requirement system A system B

http server Nginx Erlang

request processing Ruby on Rails Erlang

long-running requests Go Erlang

server-wide state Redis Erlang

stored data Redis and MongoDB Erlang

background jobs cron, bash, ruby Erlang

crash recovery upstart Erlang

demo project source code

https://github.com/sasa1977/soul_of_erlang_and_elixir

https://github.com/sasa1977/soul_of_erlang_and_elixir

https://bsky.app/profile/sasajuric.bsky.social
https://www.linkedin.com/in/sasajuric/
https://x.com/sasajuric

