
Introduction to
Advanced
Elixir

???
???

www.erlang-solutions.com
©2021 Erlang Solutions

http://www.erlang-solutions.com

https://blog.discord.com/using-rust-to-scale-elixir-for-11-million-concurrent-users-c6f19fc029d3

“Elixir is a functional
language; its data
structures are immutable.
This is great for reasoning
about code and
supporting the massive
concurrency you enjoy
when you write Elixir.”

https://www.youtube.com/watch?v=077-XJv6PLQ

Bleacher Report

Key benefits

1. A significant reduction in code
complexity

2. A significant decrease in time taken to
develop the code

3. 10x reduction in the time it takes to
update the site

4. 150 servers were reduced to just 8
5. The system easily handles over 200

million push notifications per day

https://www.erlang-solutions.com/case-studies/bleacher-report-case-study/

https://www.youtube.com/watch?v=6WbuboDwwjw

“At WhatsApp, we use
Erlang for pretty much
everything.
We’re essentially running
on Erlang.”

“ When I started working on Elixir, I
personally had the ambition of
using it for building scalable and
robust web applications. However, I
didn’t want Elixir to be tied to the
web. My goal was to design an
extensible language with a diverse
ecosystem. Elixir aims to be a
general purpose language and
allows developers to extend it to
new domains. “

José Valim

Creator of Elixir

“ Given Elixir is built on top of
Erlang and Erlang is used for
networking and distributed
systems, Elixir would naturally be a
good fit in those domains too, as
long as I didn’t screw things up.
The Erlang VM is essential to
everything we do in Elixir, which is
why compatibility has become a
language goal too.“

José Valim

Creator of Elixir

“ I also wanted the language to be
productive, especially by focusing
on the tooling. Learning a functional
programming language is a new
endeavor for most developers.
Consequently their first
experiences getting started with the
language, setting up a new project,
searching for documentation, and
debugging should go as smoothly
as possible.“

José Valim

Creator of Elixir

2x FASTER development of new services

10x BETTER services, down-time less than 5 minutes/year

10x SAFER services that are very hard to hack or crash

10x MORE users and transactions - within milliseconds

10x LESS costs and energy consumption

Business Outcomes from Erlang/Elixir/OTP

References: Cesarini (2019), CVE (2021), Virding (2008)

Robert Virding, co-creator of Erlang/OTP
“Any sufficiently complicated concurrent program in another language contains

an ad hoc informally-specified bug-ridden slow implementation of half of Erlang.”

https://www.erlang-solutions.com/blog/which-companies-are-using-erlang-and-why-mytopdogstatus/
https://cve.mitre.org/
http://rvirding.blogspot.com/2008/01/virdings-first-rule-of-programming.html

Erlang/Elixir/OTP is the Right Tool for the Job in Fintech!

 2x FASTER, 10x BETTER, 10x SAFER, 10x MORE for 10x LESS

BSA FInance

References: 5 Erlang and Elixir Use Cases In FinTech; Kivra Case Study; Æternity Case Study

https://www.erlang-solutions.com/blog/5-erlang-and-elixir-use-cases-in-fintech/
https://www.erlang-solutions.com/case-studies/kivra-erlang-and-elixir-use-case-for-fintech-app/
https://www.erlang-solutions.com/case-studies/aeternity/

Think
Concurrently

Concurrency

- Concurrency happens when your code is
running in different processes

- Control of Concurrency is key to scale
- Concurrent solutions can exploit the

underlying system’s parallelism, if present
- Parallelism can speed up execution

Task A Task B

A1 A2 A3 B1 B2 B3

A1 B1 A2 B2 A3 B3
Time

Task A Task B

Task A

Task B

Processes

- Pid1 executes spawn (pid = process identifier)
- Returns pid2
- Pid2 runs module.function(args) or anonymous function
- The process terminates abnormally when run-time errors occur
- The process terminates normally when there is no more code to execute

pid1 pid2
spawn spawn(module, function, args)

spawn(fn -> … end)

Messages

- Pid1 sends message to pid2
- Pid1 receives message from pid2 (or any process)
- self() is the pid of the caller process

pid1 pid2
message Pid1:

send(pid2, message)

pid1 pid2
message Pid1:

receive do
 message -> …
end

A concurrency example

- Cash desk service
- The customer wants to buy items
- Requests are sent to the cash desk process (product, amount)
- The cash desk process checks the prices and adds the item’s price

to the total bill
- When the customer is done, the total amount to be paid is returned

Cashdesk module (v1)
01 def done(cashdesk) do
02 send(cashdesk, {:done, self()})
03 receive do
04 total ->
05 total
06 end
07 end
08
09 defp loop(%{total: total, prices: prices} =

state) do
10 receive do
11 {:buy, customer, product, amount} ->
12 send(customer, :ok)
13 pay = amount * prices[product]
14 loop(%{state | total: total + pay})
15 {:done, customer} ->
16 send(customer, total)
17 loop(%{state | total: 0})
18 end
19 end
20 end

01 defmodule Cashdesk do
02 @prices %{"flour" => 100, "egg" => 45,

"toilet paper" => 500}
03
04 def start do
05 spawn(fn -> init() end)
06 end
07
08 def init do
09 loop(%{total: 0, prices: @prices})
10 end
11
12 def buy(cashdesk, product, amount) do
13 send(cashdesk, {:buy, self(), product,

amount})
14 receive do
15 response ->
16 response
17 after 5000 ->
18 :cashdesk_closed
19 end
20 end

Cashdesk module (v2)

01 defp loop(%{total: total, prices: prices} = state) do
02 receive do
03 {:buy, customer, product, amount} ->
04 case prices[product] do
05 nil ->
06 send(customer, :not_available)
07 loop(state)
08 price ->
09 pay = amount * price
10 send(customer, :ok)
11 loop(%{state | total: total + pay})
12 end
13 {:done, customer} ->
14 send(customer, total)
15 loop(%{state | total: 0})
16 end
17 end

Cashdesk module (v3)

01 def start do
02 pid = spawn(fn -> init() end)
03 Process.register(pid, :cashdesk)
04 end
05 ...
06 def buy(product, amount) do
07 ...
08 def done() do
09 ...

plug
handler
plug

handler

Process supervision

- Application links and monitors the included processes
- Connected processes are notified of crashes and can take action

app

plug cashdesk

plug
handler

A mix application

- Client initiates HTTP request to the server listening on port 8080
- Server spawns a process handling client request

client
plug

server

plug
handler

port 8080

response

A mix application

- HTTP server accepting JSON requests for ‘buy’ and ‘done’
- Create a new application

- mix new cashdesk --sup
- cd cashdesk

- Add dependencies to mix.exs
defp deps do
 [
 {:plug_cowboy, "~> 2.0"},
 {:jason, "~> 1.2"}
]
end

- Add processes to the supervision tree in application.ex
{Plug.Cowboy, scheme: :http, plug: Cashdesk.Router, options: [port: 8080]},
Cashdesk

- mix deps.get
- iex -S mix

Demo

- Ping
- Curl requests (verbose: -v)

- curl -X POST -H "Content-Type: application/json" -d '{"product": "egg",
"amount": 1}' localhost:8080/buy

- curl localhost:8080/done
- Invalid amount type

- curl -X POST -H "Content-Type: application/json" -d '{"product": "egg",
"amount": "a"}' localhost:8080/buy

- Fix the error with exception handling
try do
 pay = amount * price
 send(customer, :ok)
 loop(%{state | total: total + pay})
rescue
 _ ->
 send(customer, :invalid_amount)
 loop(state)
end

Unit tests

- Test files (with extension .exs), preferably using similar paths as modules, but under /test folder
- test macro for each test case in module
- assert / refute macros to evaluate test results
- Showing details on failure
- Examples in doctest cases are executed and included in code documentation

defmodule CashdeskTest do
 use ExUnit.Case
 doctest Cashdesk

 test "buy" do
 Cashdesk.buy("flour", 2)
 Cashdesk.buy("egg", 1)
 assert Cashdesk.done() == 245
 end
end

- mix test

Dialyzer

- Code analysis
- Detect potential errors

 defp deps do
 [
 {:plug_cowboy, "~> 2.0"},
 {:jason, "~> 1.2"},
 {:dialyxir, "~> 1.0", only: [:dev], runtime: false}
]
 end

- mix deps.get
- mix dialyzer

Distributed Elixir

What is it ?
- Connect several Elixir VMs to work together for the same goal

transparently
Why ?

- Fault tolerance, scaling
- When building distributed systems beware of the ‘Fallacies of

distributed computing’:
- Network is reliable
- There is no latency
- Bandwidth is infinite
- Network is secure
- Topology does not change
- There is only one administrator
- Transport cost is zero
- The network is homogeneous

Distributed Elixir

- Node is a running Elixir VM ()
- Unique name for each node - short or FQDN
- Epmd (Erlang port mapper daemon) - node name

registry - listens 4369 TCP port
- Elixir provides transparency for communication (eg.:

link/1 or monitor/1 works across the cluster)
- :global - global name registry
- Comm. is unencrypted, but TLS can be used
- Nodes are connected to each other with full mesh
- Nodes a monitoring each other automatically
- Node module is responsible for handling other nodes
- Inside VM :net_kernel module takes care of

managing communication among nodes

Node A Node B

Node CNode D

Distributed Elixir - Demo

● Create 3 nodes - (iex --sname node_a; iex --sname node_b;
iex --sname node_c)

● Connect them (:netkernel.connect_node :“node_b@vbox”)
● Check the cluster (Node.list)
● Register shell pid (Process.register(self(), :shell))
● Send message to another node (Process.send({:shell,

:"node_b@vbox"}, {“Hello”, self()}, [:noconnect])
● Receive on other node (receive do

{msg, othershell}->
IO.puts msg
send(othershell, “Hey there”)
end)

● Call function with using :rpc module (:rpc.call(:”node_c@vbox”,
Node,:list,[]))

● Monitor node (Node.monitor(:”node_c@vbox”, true)) -> message
in mailbox when monitored node goes down

Visibility through metrics.

https://github.com/erlef/observability-wg
Find here a list of projects to help you monitor your Elixir application

A Monitoring tool made by Erlang Solutions Budapest office (Thesis projects are
welcome)
https://www.erlang-solutions.com/capabilities/wombatoam/

https://github.com/erlef/observability-wg
https://www.erlang-solutions.com/capabilities/wombatoam/

Questions |>

www.erlang-solutions.com

Thank you!

Viktor Gergely
Ferenc Pesti
Zoltán Literáti

http://www.erlang-solutions.com

