I Erlang
== Solutions

Introduction to
Advanced
Elixir

www.erlang-solutions.com
©2021 Erlang Solutions

http://www.erlang-solutions.com

JISCORD

“Elixir is a functional
language; its data
structures are immutable.
This is great for reasoning
about code and
supporting the massive
concurrency you enjoy
when you write Elixir.”

Discord Blog DISCORDHQ APP UPDATES ENGINEERING & DESIGN ~ COMMUNITY POLICY & SAFETY ~ RESOURCES

Using Rust to Scale Elixir for 11
Million Concurrent Users

https://blog.discord.com/using-rust-to-scale-elixir-for-11-million-concurrent-users-c6f19fc029d3

* Cisco is shipping about 2M devices per year with Erlang in them.

* 90% of all internet traffic goes through Erlang controlled nodes.

Erlang at Cisco

* Cisco is shipping about 2M devices per year with Erlang in them.
* 90% of all internet traffic goes through Erlang controlled nodes.

* The top 8 SPs (service providers) use Erlang based systems to control
their networks, 100+ SPs world wide.

* The top 8 NEPs (Network Equipment Providers) use Erlang based
components in their products, 100+ NEPs world wide.

* Growing number of Erlang developers at Cisco.

Johan Bevemyr
How Cisco is using Erlang for intent-based networking [>]

sssssssss

https://www.youtube.com/watch?v=077-XJv6PLQ

Bleacher Report

Key benefits

1. A significant reduction in code
complexity

2. A significant decrease in time taken to
develop the code

3. 10x reduction in the time it takes to

update the site

150 servers were reduced to just 8

The system easily handles over 200

million push notifications per day

o1 B

https://www.erlang-solutions.com/case-studies/bleacher-report-case-study/

“At WhatsApp, we use
Erlang for pretty much
everything.

We're essentially running |
on Erlang.” Watch on @3 YouTube

https://www.youtube.com/watch?v=6WbuboDwwjw

“When | started working on Elixir, |
personally had the ambition of
using it for building scalable and
robust web applications. However, |
didn’t want Elixir to be tied to the
web. My goal was to design an
language with a diverse
ecosystem. Elixir aims to be a
general purpose language and
allows developers to extend it to
new domains. “

José Valim
Creator of Elixir |

By
8
By
S
o,
@y
.y
.y
h B
4

- Erlang
== Solutions

“ Given Elixir is built on top of
Erlang and Erlang is used for
networking and distributed
systems, Elixir would naturally be a
good fit in those domains too, as
long as | didn’t screw things up.
The Erlang VM is essential to
everything we do in Elixir, which is
WhlAcompatibilityfaEERslslelelp =X
language goal too.*

José Valim R -
-
Creator of Elixir = »q |
=
-3 ‘

ERLANG

I Erlang
== Solutions

“ | also wanted the language to be
, especially by focusing
on the tooling. Learning a functional
programming language is a new
endeavor for most developers.
Consequently their first
experiences getting started with the
language, setting up a new project,
searching for documentation, and
debugging should go as smoothly
as possible.”

José Valim = 4

[

Creator of Elixir ¢

Business Outcomes from Erlang/Elixir/OTP
P 1, development of new services @ motorola
L2415 services, down-time less than 5 minutes/year ERICSSON ?

m services that are very hard to hack or crash

m users and transactions - within milliseconds

L) @R I%S] costs and energy consumption B’ EEEG%ER

Robert Virding, co-creator of Erlang/OTP
“Any sufficiently complicated concurrent program in another language contains
an ad hoc informally-specified bug-ridden slow implementation of half of Erlang.”

References: Cesarini (2019), CVE (2021), Virding (2008)

https://www.erlang-solutions.com/blog/which-companies-are-using-erlang-and-why-mytopdogstatus/
https://cve.mitre.org/
http://rvirding.blogspot.com/2008/01/virdings-first-rule-of-programming.html

Erlang/Elixir/OTP is the Right Tool for the Job in Fintech!

Y\ (e oipbank kAL

E¥»TRADE

OR u Klarna. VOCALINK
seternity O Solarisbank ~ §oldman
KIVRA w B sumup° Bloomberg
V4 VAR

Nordnet =lelel (3NN A\ Monara

BSAFI

2x FASTER, 10x BETTER, 10x SAFER, 10x MORE for 10x LESS

References: 5 Erlang and Elixir Use Cases In FinTech; Kivra Case Study; Aternity Case Study

https://www.erlang-solutions.com/blog/5-erlang-and-elixir-use-cases-in-fintech/
https://www.erlang-solutions.com/case-studies/kivra-erlang-and-elixir-use-case-for-fintech-app/
https://www.erlang-solutions.com/case-studies/aeternity/

The Road to 2 Million Websocket Connections in
Phoenix

Posted on November 3rd, 2015 by Gary Rennie

2 1700045
Simultaneous Users 1763630

‘ 1999975
2.50e+6 1999984

2.00e+6|

1.50e+6| /
1.00e+6| /

ol 128906 asks: : thr; 2 running
‘ | !] ! 1 o verage: 5.45 3.98
0 100 200 300 400 500 Uptime: 5 days, 11:17:13

seconds

If you have been paying attention on Twitter recently, you have likely seen some increasing numbers

regarding the number of simultaneous connections the Phoenix web framework can handle. This post
documents some of the techniques used to perform the benchmarks.

Concurrency

- Concurrency happens when your code is
Task A Task B running in different processes
- Control of Concurrency is key to scale
- Concurrent solutions can exploit the
n

underlying system’s parallelism, if present
Al B1 A2 B2 A3 B3

- Parallelism can speed up execution

m | - Erlang

== Solutions

Processes

- Pid1 executes spawn (pid = process identifier)

- Returns pid2

- Pid2 runs module.function(args) or anonymous function

- The process terminates abnormally when run-time errors occur

- The process terminates normally when there is no more code to execute

spawn spawn(module, function, args)
—>
spawn(fn -> ... end)

I Erlang
== Solutions

Messages

- Pid1 sends message to pid2
- Pid1 receives message from pid2 (or any process)
self() is the pid of the caller process

message Pid1:
e - .
send(pid2, message)
@ < message @

Pid1:

receive do
message -> ...

end

- Erlang
== Solutions

A concurrency example

- Cash desk service

- The customer wants to buy items

- Requests are sent to the cash desk process (product, amount)

- The cash desk process checks the prices and adds the item’s price
to the total bill

- When the customer is done, the total amount to be paid is returned

- Erlang
== Solutions

Cashdesk module (v1)

91 defmodule Cashdesk d °! def done() do
efmodule Cashdesk do .
02 @prices %{"flour" => 100, "egg" => 45, gg izgggve do , fidone, })
o toilet paper" => 500} o4 iy -
04 def start do 85 total
85 spawn(fn -> init() end) 06 end
06 end 07 end
a7 08
08 def init do 09 defp loop(%{total: total, prices: prices} =
09 loop(%{total: @, prices: @prices}) state) do
1? end 10 receive do
12 def buy(, product, amount) do 1; {:buya d PFEdUCt' amount} ->
13 send(, {:buy, , product, send(, 10k)
amount})] pay = amount * prices|[product]
14 receive do 14 loop(%{state | total: total + pay})
15 response -> 15 {:done, } ->
16 response 16 send (, total)
17 after 5000 -> 17 loop(%{state | total: 8})
lg . :cashdesk_closed 18 end
en
19 end
<0 £1d 20 end

- Erlang
== Solutions

Cashdesk module (v2)

01 defp loop(%{total: total, prices: prices} = state) do
02 receive do

03 {:buy, customer, product, amount} ->

04 case prices[product] do

5K nil ->

06 send(customer, :not_available)

07 loop(state)

08 price ->

09 pay = amount * price

10 send(customer, :ok)

11 loop(%{state | total: total + pay})
12 end

13 {:done, customer} ->

14 send(customer, total)

15 loop(%{state | total: @})

16 end

17 end

- Erlang
== Solutions

Cashdesk module (v3)

def start do
pid = spawn(fn -> init() end)

end
def buy do

def done do

- Erlang
== Solutions

Process supervision

- Application links and monitors the included processes
- Connected processes are notified of crashes and can take action

v

plug
handler

- Erlang
== Solutions

A mix application

- Client initiates HTTP request to the server listening on port 8080
- Server spawns a process handling client request

port 8080

response

handler

- Erlang
== Solutions

A mix application

- HTTP server accepting JSON requests for ‘buy’ and ‘done’
- Create a new application

- mix new cashdesk --sup

- cd cashdesk

- Add dependencies to mix.exs
defp deps do

|
{:plug_cowboy, "~> 2.0"},
{:jason, "~> 1.2"}

]

end
- Add processes to the supervision tree in application.ex

{Plug.Cowboy, scheme: :http, plug: Cashdesk.Router, options: [port: 8080]},

Cashdesk
- mix deps.get
- dex -S mix

- Erlang
== Solutions

Demo

- Ping
- Curl requests (verbose: -v)
- curl -X POST -H "Content-Type: application/json" -d '{"product": "egg",
"amount": 1}' localhost:8686/buy
- curl localhost:8080/done
- Invalid amount type
- curl -X POST -H "Content-Type: application/json" -d '{"product": "egg",
"amount": "a"}' localhost:8680/buy
- Fix the error with exception handling
try do
pay = amount * price
send(customer, :ok)
loop(%{state | total: total + pay})
rescue
->
send(customer, :invalid_amount)
loop(state)

end

- Erlang
== Solutions

Unit tests

Test files (with extension .exs), preferably using similar paths as modules, but under /test folder
- macro for each test case in module

- macros to evaluate test results

- Showing details on failure

- Examples in doctest cases are executed and included in code documentation

defmodule CashdeskTest do
use ExUnit.Case
doctest Cashdesk

test "buy" do
Cashdesk.buy("flour", 2)
Cashdesk.buy("egg", 1)
assert Cashdesk.done()
end
end

- mix test

- Erlang
== Solutions

Dialyzer

- Code analysis
- Detect potential errors
defp deps do
[
{:plug_cowboy, "~> 2.0"},
{:jason, "~> 1.2"},

]

end

- mix deps.get
- mix dialyzer

- Erlang
== Solutions

Distributed Elixir

Whatis it ?
- Connect several Elixir VMs to work together for the same goal
transparently
Why ?
- Fault tolerance, scaling
- When building distributed systems beware of the ‘Fallacies of
distributed computing’:
- Network is reliable
- There is no latency
- Bandwidth is infinite
- Network is secure
- Topology does not change
- There is only one administrator
- Transport cost is zero
- The network is homogeneous

- Erlang
== Solutions

Distributed Elixir

- Node is a running Elixir VM ()

- Unique name for each node - short or FQDN

- Epmd (Erlang port mapper daemon) - node name
registry - listens 4369 TCP port

- Elixir provides transparency for communication (eg.:
link/1 or monitor/1 works across the cluster)

- .global - global name registry

- Comm. is unencrypted, but TLS can be used

- Nodes are connected to each other with full mesh

- Nodes a monitoring each other automatically

- Node module is responsible for handling other nodes

- Inside VM :net_kernel module takes care of
managing communication among nodes

Node A

Node D

Node B

Node C

- Erlang
== Solutions

Distributed Elixir - Demo

Create 3 nodes - (iex --sname node a; iex --sname node b;
iex --sname node c)

Connect them (:netkernel.connect node :“node b@vbox”)
Check the cluster (Node.1list)

Register shell pid (Process.register (self (), :shell))

Send message to another node (Process.send({:shell,

:"node b@vbox"}, {“Hello”, self()}, [:noconnect])
Receive on other node (receive do

{msg, othershell}->

IO.puts msg

send (othershell, “Hey there”)

end)

Call function with using :rpc module (: rpc.call (: “node c@vbox”,
Node, :1list, []))

Monitor node (Node .monitor (:“node c@vbox”, true))->message
in mailbox when monitored node goes down

- Erlang
== Solutions

Visibility through metrics.

Find here a list of projects to help you monitor your Elixir application
https://github.com/erlef/observability-wg

S

A Monitoring tool made by Erlang Solutions Budapest office (Thesis projects are

welcome)

https://www.erlang-solutions.com/capabilities/wombatoam/ S

WOMBATOAM

https://github.com/erlef/observability-wg
https://www.erlang-solutions.com/capabilities/wombatoam/

Questions >

0
o)

= Erlang
== Solutions

I Erlang
== Solutions

Thank you!

Viktor Gergely
Ferenc Pesti
Zoltan Literati

¥ in o 0O
www.erlang-solutions.com

I Erlang
== Solutions

Zoltan Literati
Business Unit Leader

+36 30 297 9375
zoltan.literati@erlang-solutions.com
www.erlang-solutions.com

Erlang Solutions Hungary
River Park Center

Kozraktdr 30-32

1093 Budapest

Hungary

http://www.erlang-solutions.com

