-module(sendmory).
-vsn ('2010-11-27').
-compile(export_ali).

\% @type $d()=$ integer(). \% digit values have to be in the range 0..9.
@type octet () $=\{d(), d(), d(), d(), d(), d(), d(), d()\}$
\% @spec num(Ns::[d()]) -> N::integer().
\because The value of the digit list Ns, interpreted as a decimal number, is N num (Ns) ->
lists:foldl(fun (X,E) -> E*10+X end, 0, Ns)
\% @spec smm0() -> [octet()].
: All the checks are after the generators (generate and test).
smm0 () ->
Ds = lists: seq (0, 9$)$
$\{S, E, N, D, M, O, R, Y\} \mid$
<- Ds, E <- Ds, N <- Ds, D <- Ds
$\mathrm{M}<-\mathrm{Ds}, \mathrm{O}<-\mathrm{Ds}, \mathrm{R}<-\mathrm{Ds}, \mathrm{Y}<-\mathrm{Ds}$
$\mathrm{S}>0, \mathrm{M}>0$
begin Send $=$ num ([S,E,N,D])
More $=\operatorname{num}([M, O, R, E])$
Money $=\operatorname{num}([\mathrm{M}, \mathrm{O}, \mathrm{N}, \mathrm{E}, \mathrm{Y}])$
Send+More == Money
end].
© @spec all_different (Xs::[any()]) -> B::bool()
\% B is true, if there is no repeated value in the list Xs.
all_different([]) ->
true
different([X|Xs]) ->
not lists:member(X,Xs) andalso all_different(Xs).
\% all_different(L) -> length(L) == length(lists:usort(L)).
: @spec smm1() -> [octet()].
\% Checking inequalities on the way.
smm1 () ->
D.

S
S <- DS,
N <- Ds, E /= S,
$\mathrm{N}<-\mathrm{Ds}$, not lists:member (N, [S,E]),
$\mathrm{D}<-\mathrm{Ds}$, not lists: member (D, [S,E,N])
M <- Ds, not lists:member (M, [S, E,N,D]),
0 <- Ds, not lists:member (O, $\mathrm{S}, \mathrm{E}, \mathrm{N}, \mathrm{D}, \mathrm{M}]$)
O <- Ds, not lists:member (O, [S, E,N,D,M]),
R <- DS, not lists:member (Y, [S, E,N,D, M, O, R])
$\mathrm{S}>0, \mathrm{M}>0$
begin Send $=$ num ([S, E, N, D] $)$
More $=\operatorname{num}([M, O, R, E])$
Money $=\operatorname{num}([\mathrm{M}, \mathrm{O}, \mathrm{N}, \mathrm{E}, \mathrm{Y}])$,
Send+More == Money
end]
$\%$ O The below version of select_n may be used with smm4/0 since smm4/0
$\%$ doesn't have to return the remaining elements.
$\%$ @spec select_n(N::integer(), Xs: : [any()] -> Yss: :[[any()]].
\% Elements of Yss are Ys::[any()] lists of length N, where each Ys
contains all possible permutations of N distinct elements of Xs

$\% \%$ select $n(N, X s)$->
\%\%\%
ct $\mathrm{n}(\mathrm{N}, \mathrm{XS}$) ->
$[[\mathrm{Y} \mid \mathrm{Ys}]|\mid$
$\{\mathrm{Y}, \mathrm{More}\}<-$ select (Xs),
Ys <- case N of
1 -> [[]];
$\because \% \%$
end].
\% @spec select_n(N::integer(),Xs::[any()] -> Zs::[\{[any()],[any()]\}].
\% Elements of Zs are \{Ys:: [any()],Rs::[any()]\} pairs, where Ys, a list of
\% length N, contains all possible permutations of N distinct elements of Xs,
\% and Rs contains all other elements of Xs not contained in Ys.

- Fails miserably unless (N > 0 andalso $\mathrm{N}=<$ length (Xs)) holds;
- it returns remaining elements for later use.
select_n(N, Xs) ->
$\left[\left\{\begin{array}{l}\text { Y } \mid \text { Ys }], \text { Rest }\}\end{array}|\mid\right.\right.$
$\{Y$, More $\}<-$
$\{Y$, More $\}<-$ select (Xs),
\{Ys, Rest $\}$ <- case N of
1 -> [\{[],More\}];
select n(N-1, More)
end].
\% @spec select(Xs::[any()] -> Zs::[\{any(),[any()]\}]
: Elements of Zs are \{X::any(), Rs::[any()]\} pairs, where each X is a distinct \% element of Xs and Rs contains all other elements of Xs different from X , \% while length(Zs) == length(Xs), i.e. all elements of Xs occur as X in $Z s$
select ([X]) ->
$[\{X,[]\}] ;$
select $([X \mid X s])$
$[\{X, X s\} \mid[\{Y,[X \mid Y s]\}| |\{Y, Y s\}<-\operatorname{select}(X s)]]$.
\% @spec smm5() -> [octet()].
\% Building from right to left, checking the partial sums.
smm5 () ->
Ds0 = lists:seq (0, 9) ,
[\{S,E,N,D,M,O,R,Y\} ||'

num ([N,D]) +num ([R,E])) rem $100==\operatorname{num}([E, Y])$
\{[O],Ds3\} <- select_n(1, Ds2),
(num ([E,N,D]) +num([0,R,E])) rem $1000==\operatorname{num}([N, E, Y])$,
$\{[S, M],-\}<-\operatorname{select} _$n(2, Ds3),
S > 0, M > 0 ,
begin Send $=$ num ([S,E,N,D]),
More $=([\mathrm{M}, \mathrm{O}, \mathrm{N}, \mathrm{B}, \mathrm{Y}])$
Money More == Money
end].
\% exercise: generalise the task to specifications given in strings:
smm_gen("send","more","money") ==>
[\{9567,1085,10652\}]。
smm_gen("four","five","nine") ==>
[$\{2970,2381,5351\},\{2970,2481,5451\}, \ldots,\{1970,1568,3538\}]$
\% @type selector() -> integer()
© @spec stopper(selector()) -> ().
\% Run the selected smm function and measure its run-time
stopper (V) ->
_T = statistics(runtime)
$\left[\left.\{S, E, N, D, M, O, R, Y\}\right|_{-}\right]=$
case V of
0 -> $\operatorname{smm0}()$;
1 -> $\operatorname{smm1();~}$
2 ->
$3->\operatorname{smm} 2()$;
3 ->
$\rightarrow \operatorname{smm} 3()$;
4 ->
smm4 () ;
5 ->
end,
\{_,T\} = statistics(runtime)
io: format ("SEND+MORE=MONEY: $\sim \mathrm{w} \sim \mathrm{W} \sim \mathrm{w} \sim \mathrm{w}+\sim \mathrm{W} \sim \mathrm{W} \sim \mathrm{W} \sim \mathrm{W}=\sim \mathrm{W} \sim \mathrm{w} \sim \mathrm{w} \sim \mathrm{w} \sim \mathrm{W} \sim 8 \mathrm{wms} \sim \mathrm{n}$ ", $[S, E, N, D, M, O, R, E, M, O, N, E, Y, T])$.

