
Declarative Programming, Midterm exam, 26th April 2006
Total time available: 90 minutes, total score: 60

Standard ML, Group „A” (30 point)

When the task is to write a function, all standard functions of SML and the functions defined in the lectures can be
used. The types of the standard functions which appear in the tasks are the following:

List.filter : (’a -> bool) -> ’a list -> ’a list explode : string -> char list

foldl : (’a * ’b -> ’b) -> ’b -> ’a list -> ’b implode : char list -> string

map : (’a -> ’b) -> ’a list -> ’b list Char.isAlpha : char -> bool

op@ : ’a list * ’a list -> ’a list rev : ’a list -> ’a list

op:: : ’a * ’a list -> ’a list chr : int -> char

5. There are exactly two semantic errors in each of the following (independent) syntactically correct SML expres-
sions. Which are these errors? (7 points)

(a) [op>(#"a", "b"), (1, 2) <> (1, 2, 3), true = false]

(b) (2*3 = 3+3, chr 95, ~9) = (6*1, "b", 0-5-4)

(c) foldl op@ [] [4, 2, 6, 4, 1, 2.0]

6. What is the value of x after evaluating the following (independent) value-definitions? (7 points)

(a) val (_::_::_::x) = explode "ap" @ rev [#"e", #"l", #"p"]

(b) val (_::x::_) = map Char.isAlpha (explode "4a3r2a1d")

(c) val x =
List.filter (fn (b, a) => a > b) [(7, 3*3), (1, 2), (ord #"Z", ord #"A")]

7. Assume the following function definitions. (7 points)

fun comb (x::xs, y::ys) = (y, x) :: comb(ys, xs) | comb _ = []
fun f zs = map (fn (a,b) => a+b) (comb(zs, tl zs))

(a) What is the value of x after evaluating the following (independent) value-definitions?

(a1) val x = f [1,2,3,4,5]

(a2) val x = f [~1]

(a3) val x = f [~1,1]

(a4) val x = f []

(b) Show the evaluation steps of comb([1,2,3,4], [2,3,4]), using the substitution model and eager
evaluation!

8. Three neighbouring elements of a list are called sum-triple if the sum of the first two is equal to the third, and
are called dif-triple if the difference of the first and second is equal to the third. Write an SML function called
sumdif which tells if a list contains sum-triples or dif-triples. You may define auxiliary functions only with
appropriate head-comment! (9 points)

(* sumdif : int list -> bool
sumdif zs = true, if zs constains sum-triples or dif-triples

otherwise false

*)

Examples: sumdif [1,2,4] = false;
sumdif [1,2,~1] = true;
sumdif [1,2,3,~1] = true;
sumdif [1,2,3,~1,2] = true;
sumdif [1,2,4,~3,4] = false;
sumdif [1,1] = false;
sumdif [1] = false;
sumdif [] = false;


