FUNCTIONAL PROGRAMMING, PART II

FP-1I-3
Greatest common divisor

@ Our next example calculates the greatest common diviseroidb with Euclid’s algorithm.

@ The basic thought is that if the remainderaodlivided byb is r, then the divisors of andb are
equal to the divisors df andr.

@ The SML-function follows the mathematical definition prealy again.

ged(a,0) = a fun ged (a, 0) = a
ged(a, b) = ged(b, a mod b) | ged (a, b) = ged(b, a mod b)

@ Theprocesss iterative. The number of steps grows logarithmically.

More precisely — according to theamé-theorem if Euclid’s algorithm calculates the greatest
common divisor of two numbers ihsteps, then the smaller number cannot be less/tten
Fibonacci-number. (See SICP, section 1.2.5)

Letn be the smaller parameter of the algorithmk Kteps are needed for the calculation of the
greatest common divisor, then> F(k) ~ ®*//5. So thek steps are really rational to thé (
based) logarithm ofi.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

ABSTRACTION WITH FUNCTIONS (PROCEDURES)

FP-1I-4
Prime test

@ The predicat@rime tests wheter the numberis prime. The functiorindDivisor searches
for the smallest divisor of starting from 2. is prime if the smallest divisor is itself.

@ The divisors ofn should be searched from 2 {gn, so the number of steps(+/n).

fun prime n =
let
infix divides
fun smallestDivisor n = findDivisor(n, 2)
and findDivisor (n, testDivisor) =
if square testDivisor > n
then n
else if testDivisor divides n
then testDivisor
else findDivisor(n, testDivisor+1)
and square X = X * X
and a divides b = b mod a = 0
in
n = smallestDivisor n
end

Exercise
prime searches for the smallest divisorrofising steps of one difference. Write a faster solution!

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-II-5

Prime test (continued)

@ The next SML-predicate tests the primality of a number witbbability method The number of
the steps i©)(Ign).

@ The algorithm is based on Fermat'’s Little Theorem, whictssay
if nis prime and) < a < n, thena™ is congruento a modulon, that isa” mod n = a.

@ Two numbers areongruentio each other modulo, if they have the same remainder divide(
by n. The remainder of divided byn is called the modula-based remainder af, or shortly
justa modulon.

@ If nisn’'t prime, the above relation does not apply to most of thebers) < a < n.
@ So the algorithm of the prime test follows:

@ For a given let’'s choose a numbér< a < n randomly: ifa” mod n # a, thenn isn’t prime.

Otherwise there is a great probability:obeing prime.

@ Let’s choose another number< n randomly: ifa” mod n = a, then the probability of. being
prime has grown. Choosing further values daiises the probability ofi’s primality.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1I-7
Prime test (continued)

@ We load theRandomlibrary:
load "Random";
@ fermatTest generates a pseudo-random number, and does the test once:
(* fermatTest n = false if n is not prime, true otherwise *)
fun fermatTest n =
let fun trylt a = expmod(a, n, n) = a

in trylt(Random.range (1, n) (Random.newgen()))
end

@ fastPrime repeats the tesimes times:

(* fastPrime (n, times) = true if n passes the prime test
times times
*)
fun fastPrime (n, 0) = true
| fastPrime (n, t) = fermatTest n andalso fastPrime(n, t-1)

@ Remark: This test gives a good answer at really high proitgliut not for sure. For example 5€
passes the test, however it's not prime.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-11-6
Prime test (continued)

@ The auxiliary functiorexpmod returns the modulmbased remainder of thexp th power of the
numberbase .

(* expmod (base, exp, m) = base pow exp modulo m

*)

fun expmod (, 0,) =1

| expmod (b, e, m) =

if even e
then square(expmod(b, e div 2, m)) mod m
else b * expmod(b, e-1, m) mod m

and even n = n mod 2 = 0

and square X = X * X;

@ |t's very similar toexptFast . The number of steps is proportional to the exponent’s itfyac
@ Generating of random numbers is needed. Details from the Baéke library:

Random.range (min, max) gen = an integral random number in th e
range [min, max). Raises Fail if min > max.
Random.newgen () = a random number generator, taking the see d

from the system clock.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1I-8
Functions as general calculation methods

@ We have already seen that a function (or more generally, @egroe) is ambstractionwhich —
independetly from the value of the data passed as parametescribes complex operations.

@ A higher-order function which has a function as parameseaneven higheabstraction, because
the operation implemented by it is also independent fromesexact operations, not just some
exact data.

@ So a higher-order function (procedure) expresses someokigeineral computational method

@ On the next pages we introduce some bigger examples: a ¢jemetreod for finding theeroand
fixed pointsof a function.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1I-9

Finding the roots of an equation with half-interval method

@ The half-interval method is an efficient way of finding the toof the equatiorf (z) = 0, wheref
is a continuous function.

@ The well-known core of the algorithm is:

@ If f(a) <0< f(b), f has at least one zero-point betweeandb.

@ Letz = (a+0b)/2. If f(x) > 0, thenf has (at least) one zero-point betweeandz, else (if
f(x) <0), f has aroot betweenandb.

@ The search — the iteration — is stopped whendifferenceof two consecutive values become
less then a pre-defined value.

@ Because the difference is halved in every step, the numbeeadssary steps for findig one root
fisO(L/T), whereL is the lenght of the initial interval, arifl is the allowed difference.

@ The algorithm described above is implemented bysi&rch function (see on next page):

(* search (f, negPoint, posPoint) = root of f x in the
negPoint <= x <= posPoint interval
PRE: f negPoint <= 0 and f posPoint >= 0

*)

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1I-11

Finding the roots of an equation with half-interval methodrt.)

@ |tis recommended to verify the existence of the precondltioefore applyingearch to avoid
bad answers from the SML interpreter.

@ - search(Math.sin, 4.0, 2.0) (* Good solution *);

> val it = 3.14111328125 : real
@ - search(Math.sin, 2.0, 4.0) (* Bad solution *);
> val it = 2.00048828125 : real

@ The functionhalflntervalMethod does the verification, and signals the bad initial value

negPoint andposPoint

(* halfintervalMethod (f, a, b) = root of f x in the
a <= x <= b interval
*)
@ Let’s have a look at the principle of tleeparation of concernsearch implements the strategy
of finding roots, whilehalfintervalMethod verifies the preconditions.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-11-10

Finding the roots of an equation with half-interval methodrt.)

fun search (f, negPoint, posPoint) =
let val midPoint = average(negPoint, posPoint)
in
if closeEnough(negPoint, posPoint)
then midPoint
else let val testValue = f midPoint
in
if positive(testValue)
then search(f, negPoint, midPoint)
else if negative(testValue)
then search(f, midPoint, posPoint)
else midPoint
end
end
and average (X, y) = (xt+y)/2.0
and closeEnough (x, y) = abs(x-y) < 0.001
and positive x = x >= 0.0
and negative x = x < 0.0

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-11-12

Finding the roots of an equation with half-interval methodrt.)

@ fun halfintervalMethod(f, a, b) =
let val avValue = f a; val bvalue = f b
in
if negative aValue andalso positive bValue
then search(f, a, b)
else if negative bValue andalso positive aValue
then search(f, b, a)
else print ("Values " N makestring a * " and " "
makestring b ~ " are not of opposite sign.\n")
end

@ The functionmakestring (type:nunt xt -> string) converts an arbitrary value of
numeric {nt ,real ,word,word8), char andstring type tostring type.

@ This version of the function is faulty, because all branabfethe if-then-else conditional
expressiomusthave thesame return typewhile the return value gbrint doesn’t havent
type.

@ The solution is the use of the so-calleeljuential expressiarf the form(e; f) : the interpreter
evaluate® andf in the written order, then it returns the valuefof

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-11-13

Finding the roots of an equation with half-interval methodrt.)

fun halfintervalMethod(f, a, b) =

let val (aValue, bvalue) = (f a, f b)

in
if negative aValue andalso positive bValue
then search(f, a, b)
else if negative bValue andalso positive aValue
then search(f, b, a)
else (print ("Values " ~ makestring a ~ " and " *

makestring b A " are not of opposite sign.\n");
0.0)
end,

- halfintervalMethod(Math.sin, 2.0, 4.0);
> val it = 3.14111328125 : real
- halfintervalMethod(fn x => x
> val it = 1.89306640625 : real
- halfintervalMethod(Math.sin, 2.0, 2.5);
Values 2.0 and 2.5 are not of opposite signs
> val it = 0.0 : real

*x*Xx-2.0 *x-3.0, 1.0, 2.0);

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1I-15

Finding the fixed point of a function (cont.)

fun fixedPoint (f, firstGuess) =

let
fun closeEnough (v1, v2) = abs(vl-v2) < tolerance
fun try guess =
let
val next = f guess
in
if closeEnough(guess, next)
then next
else try next
end
in
try firstGuess
end;
load "Math";

fixedPoint(Math.cos, 1.0);
fixedPoint(fn y => Math.sin y + Math.cos vy, 1.0);

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-II-14

Finding the fixed point of a function

@ The valuer satisfying thef(z) = = equation is thdixed pointof the functionf.

@ A fixed point of a functionf can be found by recursively applyinfg starting from an applicable
value:

fr, f(fo), f(F(f2), F(F(f (),

The recursion can be finished when the difference is insganfibetween two steps.

@ The parameter of the functidixedPoint is a pair; which first element is a function (of whic
the fixed point is needed), and the second element is the fiestspof the fixed point.

(* fixedPoint (f, firstGuess) = fixpoint of f in the proximity
of firstGuess with tolerance tolerance
*)
@ We also need the tolerance of the approximation:

val tolerance = 0.00001;

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-11-16

Finding the fixed point of a function (cont.)

@ The calculation of a fixed point is similar to the method folcaéating the square root (discusse
earlier): both are based on the refinement of the approxamaititil a condition is satisfied.

@ Extracting the square root can easily be considered as alaadm of fixed point: if the square
root of z is y, theny = y = z, which meang = x/y. So the fixed point of the functiofiy = =/y
is the square root of.

fun sgrt x = fixedPoint (fn y => x/y, 1.0);

@ Our solution is bad, because it doesn’t converge! It can biyezerified:

Let the first approximation af’s square root bg1, the second2 = = /y1, the third
y3 =ux/y2 =z /(x/yl) = yl. It's clear that this process is endless.

@ The oscillation can be blocked Hiyniting the value of difference between two approximate valt

@ Because of the sound result is always between the appragimaandz/y, we can choose a ne\
approximate value which is closergadhanz/y: the average of andz/y. So the new
approximation will be(y + = /y)/2.

fun sgrt x = fixedPoint (fn y => (y+x/y)/2.0, 1.0);

@ This commonly useful method is callederage damping

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1I-17

Function as return value

@ When speaking of functions as abstraction tools we usedimgchaving other functions as
parameters.

@ Now we introduce such higher-order functions that refunction(more precisely
function-valug.

@ The recently seeaverage damping so useful that it should be written as a separate funciion
the functionf is given, the average ¢f(x) andz has to be calculated.

(* averageDamp f = applying to an arbitrary value x of f
it calculates the average of x and f x *)
fun averageDamp f = fn x => (x + f x) / 2.0;

@ |t's clear that if applied to only one parametaverageDamp returns a function-value.
averageDamp is a partially applicable function.

@ Example for usingaverageDamp :
(averageDamp (fn x => x X)) 10.0; (* average of 10.0 and 100.0 *)
@ Because of the precedence of the function-applicationadperthe outer brackets can be omitte

averageDamp (fn x => x *x) 10.0;

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-11-19

Function as return value (cont.): the general Newton-ntetho

@ If x — g(z) is a differentiable function, then the equatigix:) = 0 is the fixed point ofc — f(x),
wheref(z) =z — g(x)/¢ (z) andg/(x) is the derivative of; by .

@ Thegeneral Newton-methdd an application of the fixed point method for finding the fixwdnt
of the functionf. For numeroug functions and appropriately chosewalues the
Newton-method converges fast.

@ At first, the functionderiv should be defined, which (similarly everageDamp) has a
function as parameter and it returns function.

@ |f gis a function andix is a small number, then the derivativegis thatg’ function, which has
the following value for an arbitrary number ¢'(x) = (g(z + dx) — g(z))/dz.

(* deriv g = derivative of g

*)

val dx = 0.00001;

fun deriv g = fn x => (g(x+dx) - g x) / dx;

@ For example the derivative of the functien— 2* for » = 5 (the exact value is 75):

let fun cube x = x *x*x in deriv cube 5.0 end;

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-11-18

Function as return value (cont.)

@ The definition ofaverageDamp can be written withgyntactic sugar).
fun averageDamp f x = (x + f x) / 2.0;

@ The version obkqrt written with averageDamp makes the methodied-point calculation
average dampingnd theuse of the equation = x/y explicit.

fun sgrt x = fixedPoint(averageDamp (fn y => xl/y), 1.0);
sqrt 4.0;

@ Conclusion: a process can be described by lots of proceduretheessencés much more
comprehensible when introducipgoperly selected abstractions

@ Another example for the application of the principles destmated above: the cube root.ofs
the fixed point ofy +— x/y> — with SML-notationfn y => x/(y *y) . We already have the
solution!

fun cubeRoot x = fixedPoint(averageDamp (fn y => xl/yly), 1.0);
cubeRoot 8.0;

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-11-20

Function as return value (cont.): the general Newton-ntetho

@ With the help ofderiv the general Newton-method can be defined fasesl-point process

fun newtonTransform g x = x - (g x / deriv g X)
and newtonsMethod g guess = fixedPoint(newtonTransform g, guess)

@ Example for usingiewtonsMethod

fun sgrt x = newtonsMethod (fn y => vy *y-x) 1.0;
sqrt 16.0;

@ Two general methods were shown for extracting the squateof@number: one was the
fixed-point method and the other was the Newton-method.

@ Because of the last is based on the fixed-point method, imfadtave seen two applications of t
fixed-point method.

@ |n both cases a fixed point of a transformation on the origimattion is calculated.

@ Even this general method can also be defined as a procedooti¢ft), as we can see on the ne;
slides.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-11-21

Function as return value (cont.): two ways of applying thedipoint method

@ (» fixedPointOfTransform (g, transform, guess) =
a fixed point of (transform g) with the initial guess guess
*)
fun fixedPointOfTransform (g, transform, guess) =
fixedPoint(transform g, guess)

@ This was the first version agfgrt based on finding a fixed point:
fun sqgrt x = fixedPoint(averageDamp (fn y => xl/y), 1.0)
@ After rewriting with the function implementing the genenaéthod:

fun sgrt x = fixedPointOfTransform (fn y => xly,
averageDamp, 1.0)

@ This was the second versionsdrt using the general Newton-method:
fun sgrt x = newtonsMethod (fn y => vy *y-X) 1.0;
@ After rewriting with the function implementing the genena¢thod:

fun sqrt x = fixedPointOfTransform (fn y =>y *Y-X,
newtonTransform, 1.0)

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-11-23

Data abstraction: rational numbers

@ On the next few lectures we will consider compound data artal alastraction.

@ Base of data abstraction: we build our programs working enpgmmund data that

@ the program parts using the data shouldn’t suppose anytfithg data structure, only the
predefined operations should be used,

@ the program parts defining the data should be independenttfire program parts using it,

@ the interface between these two parts of the program shoulsist ofconstructorsand
selectors

@ From the compound data we have met tuples and lists before.

@ |n our first bigger example we introduce the implementatibthe rational numbers and the
operations on them.

@ A rational number can be represented with a pair, which fiesinmer is thenumeratorand the
second is thelenominator

@ The four basic arithmetic operations will be implementaddRat , subRat , mulRat ,
divRat , and the test for equalityequRat .

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

ABSTRACTION WITH DATA

FP-II-24

Data abstraction: rational numbers (cont.)

@ Suppose that

@ we have aonstructor operationvhich generates the rational number from a numenat@nd
a denominatod: makeRat(n,d) , andalso

@ we have aselector operationvhich generates the numerator and one which generates the
denominator of a rational numbgr num g, den q.

@ |et’s write an SML-program with the well-known operations:
ni1/dy + nafdy = (nids + nady) /(dids), ny/dy — na/ds = (nids — nady) /(dids),
(n1/dy)(na/ds) = (nang)/(dids), (n1/dy)/(n2/ds) = (nids)/(dins),
ny/dy = ny/dy if and only if nydy = nad;.

fun addRat(x, y) =

makeRat(num x * den y + num y = den x, den x =* den vy)
fun subRat(x, y) =

makeRat(num x * den y - num y = den x, den x =* den vy)
fun mulRat(x, y) = makeRat(num x * num y, den x * den vy)
fun divRat(x, y) = makeRat(num x * den y, den x * num Yy)
fun equRat(x, y) = num x * den y = den x * num 'y

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-11-25

Data abstraction: rational numbers (cont.)

@ |n the SML we have &onstructor operatiotfior generating auple we enumerate the members
between round brackets separated by commas, and

@ we have aselector operatiorfor selecting one element oftaple # i , wherei is thepositional
label of theith element starting from 1.

@ Examplesy(3, 4); #1(3, 4); #2(3, 4);
@ The members of tauplecan also be bound to a name jpgttern matchingfor exampleval (n,
d=@G 4

@ The type, the constructor and the selectors of the ratiamaber will be implemented byeak
abstraction:

type rat = int *int;

fun makeRat (n, d) = (n, d) : rat;
fun num (q : rat) = #1 q;

fun den g = #2 (g : rat);

@ Theweak abstractiogives name to an object, biitdoes not hidehe details of the
implementation.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-11-27

Data abstraction: rational numbers (cont.)

@ Now the first version of our program implementing the rationanbers is ready. The full
program:

type rat = int * int;

fun makeRat (n, d) = (n, d) : rat;
fun num (q : rat) = #1 q;

fun den q = #2 (q : rat);

fun addRat(x, y) =

makeRat(num x * den y + num y * den x, den x * den vy)
fun subRat(x, y) =

makeRat(num x * den y - num y = den x, den x * den vy)

fun mulRat(x, y) = makeRat(num x * num y, den x =* den vy)
fun divRat(x, y) = makeRat(num x * den y, den x * num Yy)
fun equRat(x, y) = num x * den 'y = den x * numy

fun printRat q =
print(makestring(num qg) ~ "/* ~ makestring(den g) * "\n");

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-11-26

@ An output operation is also needed for printing a rationahbar of the forrm/d .

fun printRat q =

print(makestring(num q) ~ "/* ~ makestring(den q) * "\n");

Higher-level functional programming. BME VIK, Autumn 2006

Data abstraction: rational numbers (cont.)

(Functional programming)

FP-11-28

@ Some examples for using the program:

val oneHalf = makeRat(1,2);
val oneThird = makeRat(1,3);
val twoThird = makeRat(2,3);

printRat oneHalf;

printRat(addRat(oneHalf, oneThird));
printRat(mulRat(oneHalf, oneThird));
printRat(addRat(oneThird, oneThird));

equRat(addRat(oneThird, oneThird), twoThird);

oneThird = oneThird;
addRat(oneThird, oneThird) = twoThird,;

Higher-level functional programming. BME VIK, Autumn 2006

(Functional programming)

FP-11-29

Data abstraction: rational numbers (cont.)

@ After trying the last example we can observe that our progitess nonormalisethe rational
numbers, which means they aren’t stored and printed in giriplest form.

@ We can help this problem by dividing the numerator and thedenator with their greatest
common divisor in the constructor operation:

fun makeRat (n, d) =
let val g = gcd(n, d) in (n div g, d div g) : rat end;

The selector operations aren’t changed.

@ The rational numbers are stored in their normalised fornmag@nly the printing, but the test for
equality gives also a correct result:

printRat(addRat(oneThird, oneThird));
addRat(oneThird, oneThird) = twoThird;

@ There was only one location in the program where we had to rola&eges for the normalisatior

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-11-31

Data abstraction: rational numbers (cont.)

@ Abstraction barriers isolate certain parts of the progreomfeach other.

@ |ts advantage is that the programs are easier to maintaitbanddify, for example changing the
representation of the data.

@ For example a rational number can be normalised lazily, afign we need its numerator or
denominator, instead of when it's created. If lots of ratiomumbers are generated, but their
numerators or denominators are rarely needed, then theddtion is more efficient.

fun num (q : rat) =

let val (n, d) = g; val g = gcd(n, d) in n div g end;
fun den (q : rat) =

let val (n, d) = g; val g = gcd(n, d) in d div g end;

@ The non-normalising version afiakeRat will be used, the rest of the program isn’t changed.

printRat(addRat(oneThird, oneThird));
addRat(oneThird, oneThird) = twoThird,;
equRat(addRat(oneThird, oneThird), twoThird) = true;

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-11-30

Data abstraction: rational numbers (cont.)

Data abstraction barriersn the rational numbers package

--------- Programs using rational numbers

Rational number in the problem space

--------- addRat subRat mulRat divRat equRat

Rational number like numerator and denominator

--------- constructor: makeRat; selectors: num, den

Rational number as a pair

--------- constructor: (,) ; selectors: #1, #2

Implementation of pair in SML

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-11-32

Data abstraction: rational numbers (cont.)

@ Speaking oflatawe can'’t only say that ,data is that the given constructosseiectors
implement”.

@ |t's obvious that only a certain set of constructors andctets are applicable for example for
implementing the rational numbers.

@ |n the case of rational numbers the constuctors and setetost grant the fulfillment of the
following conditions (axioms):

(» PRE : d >0 =*)
= makeRat(n, d);
= num X
= den x

o S5 X

@ One abstraction stage lower the pair representation messfalfill the following conditions:

a=0x1Y)
X = #1 q
y =#2 q

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-11-33

Data abstraction: rational numbers (cont.)

@ Every implementation which satisfy these requirementpjsieable, like this next example:

exception Cons of string;
fun cons (x, y) =
let fun dispatch 0 = x

| dispatch 1 =y
| dispatch _ = raise Cons "argument not O or 1"
in dispatch

end;
fun fst z = z O;
fun snd z = z 1;

@ Equations describing a property

g = cons(n, d)
n = fst q
d = snd q

@ |et’s notice that object implementing the rational numisesfunctiorl fst andsnd senda
message to the object. So this style of programming is callessage passing

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-11-35

Data abstraction with modules: rational numbers
structure Ged = struct

fun ged (a, 0) = a

| ged (a, b) = ged(b, a mod b) end

structure Rat =
struct

type rat = int * int;

fun makeRat (n, d) = let val g = Gcd.gcd(n, d) in (n div g, d div g) : rat end

fun num (q : rat) = #1 q
fun den g = #2 (q : rat)

fun addRat(x, y) = makeRat(num x * den'y + numy * den x, den x * den vy)
fun subRat(x, y) = makeRat(num x * den'y - numy * den x, den x = den y)
fun mulRat(x, y) = makeRat(num x * num y, den x * deny)

fun divRat(x, y) = makeRat(num x * den y, den x * num vy)

fun equRat(x, y) = num x * den'y = den x * num 'y

fun printRat q = print(makestring(num q) ~ "/* ~ makestring(den g) * "\n");
val one = makeRat(1,1)

val zero makeRat(0,1)

val oneHalf makeRat(1,2)

val oneThird = makeRat(1,3)
val twoThird = makeRat(2,3)
end;

The abstracction isn’t strong enough: the details areddén enough!

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-II-34

Data abstraction: rational numbers (cont.)

@ Example:

val q = cons(l, 2);
fst q =1, snd q = 2;

@ Constuctor and selectors implemented by message passing:

fun makeRat (n, d) =

let val g = gcd(n, d) in cons(n div g, d div g) end,;
fun num q = fst q;
fun den g = snd q;

@ Our package implementing rational numbers has a big prahitamesweak abstractionso it
doesn'’t hide the details of the implementation; it's up te gnogrammer how deep he/she keep
the abstraction barriers. This is the source of bugs.

@ The details of the implementation can be hidden from therombeld usingstrong abstraction

with the help of modules. The name of the ,implementationtimle in SML isstructure , and
the name of the (optional) ,interface” modulesignature

structure nanme = struct ... end
signature nane = sig ... end

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-11-36

Data abstraction with modules: rational numbers (cont.)

This is the real signature of the implementalt structure:

> structure Rat :

{type rat = int * int,

val addRat : (int * int) * (int * int) -> int *int,
val den : int * int -> int,

val divRat : (int * int) * (int * int) -> int *int,
val equRat : (int * int) * (int * int) -> bool,

val makeRat : int * int -> int = int,

val mulRat : (int * int) * (int * int) -> int *int,
val num : int * int -> int,

val one : int * int,

val oneHalf : int *int,

val oneThird : int * int,

val printRat : int * int -> unit,

val subRat : (int * int) * (int * int) -> int *int,
val twoThird : int * int,

val zero : int *int}

Theint type of the two components of that type can be seen.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-11-37 FP-11-38

Data abstraction with modules: rational numbers (cont.) Data abstraction with modules: rational numbers (cont.)

The creation of the signature and its binding to the stredtonit the visibility of the implemented structure Rat_1 :> Rat = (* this is the so-called
values: struct

opaque signature binding *)

signature Rat =
sig
type rat
val makeRat : int
val num : rat -> int
val den : rat -> int
val addRat : rat * rat -> rat
val subRat : rat * rat -> rat
*
*

* int -> rat

val mulRat : rat rat -> rat
val divRat : rat rat -> rat
val equRat : rat * rat -> bool
val printRat : rat -> unit
val one : rat
val oneHalf : rat
val oneThird : rat
val twoThird : rat
val zero : rat

end;

Higher-level functional programming. BME VIK, Autumn 2006

Data abstraction with modules: rational numbers (cont.)

(Functional programming)

FP-11-39

This is the real signature &atl (bound toRat with opaque signature binding

> New type names: rat
structure Ratl :
{type rat = rat,

val addRat : rat * rat -> rat,

val den : rat -> int,

val divRat : rat * rat -> rat,

val equRat : rat * rat -> bool,
val makeRat : int * int -> rat,
val mulRat : rat * rat -> rat,

val num : rat -> int,
val one : rat,

val oneHalf : rat,

val oneThird : rat,

val printRat : rat -> unit,

val subRat : rat * rat -> rat,
val twoThird : rat,

val zero : rat}

Higher-level functional programming. BME VIK, Autumn 2006

(Functional programming)

type rat = int * o int;
fun makeRat (n, d) = let val g = Gcd.gcd(n, d)
in
(n div g, d div g) : rat
end
fun num (q : rat) = #1 q
fun den q = #2 (q : rat)

fun addRat(x, y)
fun subRat(x, y)
fun mulRat(x, y)
fun divRat(x, y)

makeRat(num x
makeRat(num X
makeRat(num x
makeRat(num x

* den y + num y * den x, den x
* den'y - numy x den x, den X
* num y, den x * den y)
* den y, den x * num vy)

fun equRat(x, y) = num x * deny = den x * num 'y

fun printRat q = print(makestring(num q) ~ "/" ~ makestring(den
val one = makeRat(1,1)

val zero makeRat(0,1)

val oneHalf makeRat(1,2)

val oneThird = makeRat(1,3)
val twoThird = makeRat(2,3)
end;

* den y)
* den vy)

Q) ~ W)

Higher-level functional programming. BME VIK, Autumn 2006

Data abstraction with modules: rational numbers (cont.)

(Functional programming)

FP-11-40

@ Examples of the use of the structiRat :

open Rat_1;

printRat oneHalf;

printRat(addRat(oneHalf, oneThird));
printRat(mulRat(oneHalf, oneThird));
printRat(addRat(oneThird, oneThird));
equRat(addRat(oneThird, oneThird), twoThird);

addRat(oneThird, oneThird) = twoThird;
addRat(oneThird, oneThird) = twoThird;

NANANANNNNNNNNNNNNNNNNNNNNNNN

rat

!
!
I Type clash: expression of type
!
I cannot have equality type "a

@ Hey! The relation= cannot be used!

@ |f needed, the MOSML interpreter should be told with the deafioneqtype that the equality
test ofrat type values is allowed; which mearet is a so-callecquality type

Higher-level functional programming. BME VIK, Autumn 2006

(Functional programming)

FP-Il-41
Data abstraction with modules: rational numbers (cont.)
signature Rat = > signature Rat =
sig N=rat.
eqtype rat {type rat = rat,
val makeRat : int * int -> rat val makeRat : int * int -> rat,
val num : rat -> int val num : rat -> int,
val den : rat -> int val den : rat -> int,
val addRat : rat * rat -> rat val addRat : rat = rat -> rat,
val subRat : rat * rat -> rat val subRat : rat * rat -> rat,
val mulRat : rat * rat -> rat val mulRat : rat * rat -> rat,
val divRat : rat * rat -> rat val divRat : rat * rat -> rat,
val equRat : rat * rat -> bool val equRat : rat * rat -> bool,
val printRat : rat -> unit val printRat : rat -> unit,
val one : rat val one : rat,
val oneHalf : rat val oneHalf : rat,
val oneThird : rat val oneThird : rat,
val twoThird : rat val twoThird : rat,
val zero : rat val zero : rat}
end;
A version of the structur®at can also be produced in the
name ofRat2 with theRat signature above using equality
type:
structure Rat2 :> Rat = Rat;
Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)
FP-11-43

Data abstraction with modules: rational numbers (cont.)

@ | et's choose names more close to those in mathematics féuticdons:

signature Rat =
sig
eqtype rat
val rat :int * int -> rat
val num : rat -> int
val den : rat -> int

val ++ : rat * rat -> rat
val -- : rat * rat -> rat
val * :rat * rat -> rat
val // : rat * rat -> rat
val == : rat * rat -> bool

val toString : rat -> string
val one : rat
val oneHalf : rat
val oneThird : rat
val twoThird : rat
val zero : rat
end;

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-II-42

Data abstraction with modules: rational numbers (cont.)

@ The values defined in tHeat structure must be referenced with their full name:

Rat.printRat(Rat.mulRat(Rat.oneHalf, Rat.oneThird));
Rat.printRat(Rat.addRat(Rat.oneThird, Rat.oneThird)) ;

@ The content of the structure can be made visible — in mea$ioriéed by the signature — with
open:

open Rat2;
equRat(addRat(oneThird, oneThird), twoThird);
addRat(oneThird, oneThird) = twoThird;

@ The visibility can be local (declaration, or expressionhadcal declaration):
local open Rat2
val q1 = addRat(oneThird, oneThird); val g2 = twoThird
in val ratPair = (q1, g2)
end;

let open Rat2
in printRat(addRat(oneThird, oneThird))
end;

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1I-44
Data abstraction with modules: rational numbers (cont.)
structure Rat3 > Rat =
struct
type rat = int * int
fun rat (n, d) =
let val g = Ged.ged(n, d) in (n div g, d div g) : rat end
fun num (q : rat) = #1 q
fun den q = #2 (q : rat)
fun op++(x, y) = rat(num x * deny + numy * den x, den x * den vy)
fun op--(x, y) = rat(num x * deny - numy = den x, den x * den vy)
fun op * (x, y) = rat(lhum x * num y, den x = den vy)
fun op//(x, y) = rat(num x * den y, den x * num y)
fun op==(x, y) = num x * deny = den X * num vy
fun toString r = makestring(num r) ~ /" A makestring(den r)
val one = rat(1,1)
val zero = rat(0,1)
val oneHalf = rat(1,2)
val oneThird = rat(1,3)
val twoThird = rat(2,3) end;
Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-II-45

Data abstraction with modules: rational numbers (cont.)

@ The new operators can be used in prefix position:

let open Rat3

in
print(toString(++(*+ (oneThird, oneHalf),oneThird)) ~ "\n"),
++(oneThird, oneThird) = twoThird

end,;

At least one space is needed betwéeand+*+ , or the MOSML considers it as beginning of a
commerit

@ Or they can be converted to infix position:

let open Rat3
infix 6 ++ --
infix 7 x|

print(toString(oneThird *» oneHalf ++ oneThird) ~ "\n");
oneThird ++ oneThird = twoThird
end;

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1I-47
Data abstraction with modules: rational numbers (cont.)
@ New typeandnew constructorsan be generated using ttatatype declaration:
structure Rat4 :> Rat =
struct
datatype rat = Rat of int * int
fun rat (n, d) = let val g = Ged.ged(n, d) in Rat(n div g, d div g)
fun num (Rat q) = #1 q
fun den (Rat q) = #2 ¢
fun op++(x, y) = rat(num x * deny + numy * den x, den x * den vy)
fun op--(x, y) = rat(num x * deny - numy = den x, den x * den vy)
fun op ** (x, y) = rat(num X * num y, den x =* den vy)

fun op//(x, y) rat(num x * den y, den x * num y)
fun op==(x, y) = num X * den y = den x * num y
fun toString r = makestring(num r) ~ "/" ~ makestring(den r);

val one = rat(1,1)
val zero = rat(0,1)
val oneHalf = rat(1,2)

val oneThird = rat(1,3)
val twoThird = rat(2,3) end,

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1I-46

Data abstraction with modules: rational numbers (cont.)

@ The common basic operators can also be redefined.

@ Their original meaning doesn't get lost, but the full naméhaf operations has to be usedomefix
position:

load "Int";

let open Rat3
val op+ = ++
val op- = --
val op * = *x
val op/ = /I

print(toString oneHalf ~ "\n");
print(toString(oneHalf + oneThird) ~ "\n");
print(toString(oneHalf * oneThird) » "\n");
print(toString(oneThird - oneThird) ~ "\n");
print(toString(twoThird / oneThird) ~ "\n");
oneThird + oneThird = twoThird;
Int.+(1,2)

end;

Note thatint.+ cannot be used in infix positiod: Int.+ 2 (* faulty! *)

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-11-48
Data abstraction with modules: rational numbers (cont.)
@ The data constructor can (and should) be used for patterrhingtasselector
structure Rat5 :> Rat =
struct
datatype rat = Rat of int *int;
fun rat (n, d) = let val g = Ged.ged(n, d) in Rat(n div g, d div g)
fun num (Rat(n, _)) =n
fun den (Rat(_, d)) =d
fun op++(x, y) = rat(num x * deny + numy * den x, den x * den vy)
fun op--(x, y) = rat(num x * deny - numy = den x, den x * den vy)
fun op ** (X, y) = rat(num X * num y, den x =* den vy)

fun op//(x, y) rat(num x * den y, den x * num y)
fun op==(x, y) = num X * den y = den x * num y
fun toString r = makestring(num r) ~ "/ ~ makestring(den r);

val one = rat(1,1)
val zero = rat(0,1)
val oneHalf = rat(1,2)

val oneThird = rat(1,3)
val twoThird = rat(2,3) end,

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

Data abstraction with modules: rational numbers (cont.)

FP-1I-49

@ The data constructor function cegally be used for the generation of a new useful value:

structure Raté > Rat =
struct
datatype rat = Rat of int *int;
val rat = Rat;
fun num (Rat(n, _)) = n
fun den (Rat(_, d)) = d

fun op++(x, y) = rat(num x * deny + numy x den x, den X
fun op--(x, y) = rat(num x * den y - numy * den X, den x
fun op * (x, y) = rat(hum x * num y, den x * den vy)
fun op//(x, y) = rat(num x * den y, den x * num Yy)

fun op==(x, y) = num Xx * deny = den X * num vy
fun toString r = makestring(num r) A "/ ~ makestring(den r);
val one = rat(1,1)

val zero = rat(0,1)

val oneHalf = rat(1,2)

val oneThird = rat(1,3)

val twoThird = rat(2,3) end,

* den y)
* den y)

Higher-level functional programming. BME VIK, Autumn 2006

Summary: weak and strong data abstraction

(Functional programming)

FP-11-51

@ Weak abstraction: the name is a synonim, the parts of thestlateture are still accesible.

@ Strong abstraction: the name stands for a new thing (enbjfgct), the parts of the data structur

can only be accessed with restrictions.
@ type : weak abstraction; exype rat = {num : int, den : int}
@ Gives new name to a type expression (see value declaration).
@ Helps understanding the program.
@ abstype : strong abstraction
@ Creates a new type: name, operations, representatiorniomta
@ Outworn, there’s bettedatatype + modules

@ datatype : without modules weak, with modules strong abstraction;
ex.datatype 'a perhaps = Nothing | Something of 'a
Built-in version in SML:datatype 'a option = NONE | SOME of ’a

@ Creates a new entity.
@ Can be recursive and polymorphic.

Higher-level functional programming. BME VIK, Autumn 2006

(Functional programming)

WEAK AND STRONG ABSTRACTION

Declaration with loccal declaratiofocal declaration

FP-11-52

@ Un.local -deklaraciot hasznalunk, ha egyes deklaraciokat fel alkalnasznalni mas

deklaraciékban, mikdzbesl akarjuk rejtenidket a program tobbi részetel

@ Szintaxisa: local d1 ahol d1 egy nemiires deklaracidsorozat,

in d2

end d2 egy masik nemires deklaracidésorozat.

@ Példa:

(* length : 'a list -> int
length zs = a zs lista hossza

*)
local
(* len : ’a list * int -> int
len (zs, n) = az n és a zs lista hosszanak Osszege
*)
fun len (], n) =n
| len (_:zs, n) = len(zs, n+l)
in
fun length zs = len(zs, 0)
end

Higher-level functional programming. BME VIK, Autumn 2006

(Functional programming)

FP-1I-53
User-defined datatypes: about thetatype declaration again

@ A new compound type callggerson is created:

datatype person = King
| Peer of string * string * int
| Knight of string
| Peasant of string

@ The new type has foutata constructofshortly: constructoy:
King , Peer , Knight andPeasant .

@ King is a so-calledlata constructor constanthe rest are the so-callel@ta constructor functions
@ The data constructors has type as well:

King : person

Peer : string * string * int -> person
Knight : string -> person

Peasant : string -> person

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-11-55
Thedatatype declaration (continued)

@ |n the example below one of the four is tReasant name pattern and thenameinside is the
pattern identifier

(* title : person -> string
tite p = title of p *)
fun title King = "His Majesty the King "
| title (Peer (deg, ter, _)) = "The " ~ deg ™ " of " ~ ter
| title (Knight name) = "Sir " * name
| title (Peasant name) = name

@ The functionsirs gathers the names of &hight -s from a list of peoplegderson -s). (The
order of the clauses importantbecause of the !):

(* sirs : person list -> string list

sirs ps = the list of the names of all Knights *)
fun sirs [] =]

| sirs ((Knight s)::ps) = s:sirs ps

| sirs (_:ps) = sirs ps

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-II-54

Thedatatype declaration (continued)

King : person

Peer : string * string * int -> person
Knight : string -> person

Peasant : string -> person

@ There’s only on&ing , so it could be defined as a constructor constant.

@ Peer is identified by his title §tring), the name of his estatet(ing) and his ordinal numbe

(int).
@ Knight andPeasant are only identified by their namstting).
@ Example on using the datatyperson :

val persons = [King, Peasant "Jack Cade", Knight "Gawain",
Peer("Duke", "Norfolk", 9)];

> val persons = [King, Peasant "Jack Cade", ..] : person list
@ Certain cases may be distinguished by pattern matching.

@ All cases must be covered by a pattern; otherwise we are wéynthe interpreter.
@ Patterns can be arbitrarily complex.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-11-56
Thedatatype declaration (continued)

@ [f the order of the clauses was different, theps pattern would matcKnight

as well, not
only King , Peer andPeasant (it stands for them in the example).
@ Enumerating all disjunct cases helps proving the soundvfebg algorithm.

@ The three cases are closed up in one because their detadiid @xpand the code and the
execution as well.

@ Proving the soundness isn't problematic if the third linghaf function irs (_::ps) =
sirs ps)is considered aonditional equation

sirs(p::ps) = sirs ps i f Vs-p#£Knight s

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1I-57

Thedatatype declaration (continued)

@ Order is more important in the following example, where &iehy of people is observed. Inste:
of 16 only 7 cases have to be distinguished: which reture

(* superior : person * person -> bool
superior (p, r)= true if p has higher rank than r *)
fun superior (King, Peer _) = true
superior (King, Knight) = true
superior (King, Peasant _) = true
superior (Peer _, Knight _) = true
superior (Peer _, Peasant) = true
superior (Knight _, Peasant _) = true
superior _ = false

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-11-59
Enumeration type witldatatype declaration (continued)

@ |n case of data with typdegree the cases have to be handled separately, for example

(* lady : degree -> string

lady p = rank of p peer's wife *)
fun lady Duke = "Duchess "

| lady Marquis = "Marchioness"

| lady Earl = "Countess"

| lady Viscount = "Viscountess"

| lady Baron = "Baroness"

@ TypeBool with Not function similar to the internabool could be declared/defined:

datatype Bool = True | False
(* Not : Bool -> Bool
Not b = b negaltja *)
fun Not True = False | Not False = True

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-11-58

Enumeration type witllatatype declaration

@ |t's frequent that a name can take only few different valuke €ardinality of the set of the value
which can be taken by the name is small). In this case it'sulsefcreate amnumeration type
with datatype declaration. For example

datatype degree = Duke | Marquis | Earl | Viscount | Baron

@ An enumeration type has ontpnstructor constantdn order to use the new type the type
person has to be declared again:

datatype person = King
| Pear of degree * string * int
| Knight of string
| Peasant of string

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-11-60
Polymorphic datatypes
@ We have seen théist is apostfixpositionedtype operatornot a type: thelatatype
declaration also generatesype constructobeside the data constructors.
@ ’a List —similartotheinternal list —with Nil andCons data constructorgan be

defined in this way:
datatype 'a List = Nil | Cons of 'a * ‘'a List;

@ Using theCons data constructor functiofor creating lists is very inconvinient. For example th
1, 2, 3, 4 sequence has to be created in this way:

Cons(1, Cons(2, Cons(3, Cons(4, Nil))));

@ Theinfix positioned:: data constructor operator can be introduced:
infix 5 ::x ; val op ::: = Cons

@ The infixtriple-coloncan also be defined in the type declaration itself:

infix 5 :: ; datatype 'a List = Nil | ::: of 'a * ‘'a List

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1-61
Polymorphic datatypes: disjunct union

@ Our next example is théisjunct uniornof two types:
datatype (‘a, 'b) disun = In1 of 'a | In2 of 'b
@ Three things can be defined:

1.thedisun type operator with two arguments,
2.thelnl : ’a -> (a, ’'b) disun and

3.theln2 : b -> (a, 'b) disun data constructor functions.

@ ('a, 'b) disun is the disjunct union of typea and’b . The union is called discunct
because the base type of one or another element of the phitypi('a, 'b) disun can be

determined later. The values of the new type has the fadmx if x has’a type, andnl y if
y has’b type.

@ Thelnl andIn2 constructor functions can be considered as salstlsthat distinguish typéa
from type’b .

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-11-63
Disjunct union (continued)

@ An example on usingoncat :
concat [In1 "Oh! ", In2 King, In1 "Scotland"];

> val it = "Oh! Scotland" : string

@ The type of thdnl constructor functioni& -> ('a, 'b) disun , S0 applied to the
"Oh!" argument of typestring its result hagstring, 'b) disun type.

@ The type of thdn2 constructor functioni®% -> ('a, 'b) disun , S0 applied to the
"King" argument of typgerson its result hagstring, 'a) disun type.

@ In the expressiofinl "Oh!", In2 King, In1 "Scotland"]
bound, so the type of this list i¢(string, person) disun) list

@ The evaluation of the expressifin2 "0", In2 King, Inl “Skoécia"]
because th#v type variable can’t be bound differently in the same expogss

all two base types are

results in error,

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-11-62
Disjunct union (continued)

@ The disjunct union allows to use different types where omig type is allowed otherwise (see
object oriented programming, wheralaapeclass can have descendants liketangle triangle or
circle).

@ |n SML lists with elements of different typesn be created with disjunct union:

[In2 King, In1 "Scotland"] : ((string, person) disun) list;
[In1 “"tyranne”, In2 1040] : ((string, int) disun) list

@ Possible cases can be processed pétttern matchings usual, for example

(* concat : (string, 'a) disun list -> string
concat d = concatenation of elements with Inl
label of d disjunct union *)

fun concat [] = ™
| concat (In1 s :: Is) = s ~ concat Is
| concat (In2 _ :: Is) = concat Is;

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

CASE-STRUCTURE, OPTIONAL VALUE

FP-11-65
Case-structurec@se)

case E of P1 => E1 | P2 => E2 | -+~ | Pn => En

The SML-interpreter tries to match — from left to right andrfr up to down -E to P1, or — if it fails —
to P2 and so on. The result of thmse -structure will be thaEi which belongs to the fird®i
matchingk.

case is also just a syntactic sugar becuase it can be replacéd impotation:
(fn P1 => E1 | P2 => E2 | | Pn => En) E

For examples the functidady could have been defined in this way:
datatype degree = Duke | Marquis | Earl | Viscount | Baron

(* lady : degree -> string (* lady : degree -> string
lady p = rank of p peers wife *) lady p = rank of p peers wife *)
fun lady p = fun lady p =
case p of (fn
Duke => "Duchess " Duke => "Duchess "
| Marquis => "Marchioness" | Marquis => "Marchioness"
| Earl => "Countess" | Earl => "Countess"
| Viscount => "Viscountess" | Viscount => "Viscountess"
| Baron => "Baroness" | Baron => "Baroness"
) p

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1I-67
Examples on handling optional values

@ Selecting the greatest element from an integer list

An empty list doesn’'t have a greatest element; the gredtsieat of a list with a single element

is that single element; the greatest element of a list withast two elements is the greatest
among the first element and the rest of the list.

(* maxl : int list -> int option
maxl ns = the greatest element of the ns integer list *)
fun maxl [] NONE (* empty =*)
| maxl [n] SOME n (* one element =)
| maxl (n:ns) = (* at least two elements *)
SOME(Int.max(n, valOf(max| ns)))

@ Converting a the beginning character sequence of a striag teteger

val Int.fronString : string -> int option (* Overflow «)

Int.fronBtring s = SOME i if a decimal integer numeral can be scanned
from a prefix of string s, ignoring any initial whitespace;
NONE otherwise. A decimal integer numeral, after any initia |
whitespace, must have the form: [+~-]?[0-9]+

Int.fromString "1234"; Int.fromString "-1234"; Int.from String "~1234";
Int.fromString "+1234"; Int.fromString "+007"; Int.from String "alma"

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-11-66
Handling optional valuesq option)

datatype 'a option = NONE | SOME of 'a

Functions from th@ption library:

val get Opt : ’a option * 'a ->'a

val isSone : 'a option -> bool

val val Of : 'a option -> 'a

val filter : (a -> bool) -> 'a -> 'a option

val map : (a -> 'b) -> 'a option -> 'b option

val mapParti al : (a -> 'b option) -> (‘a option -> 'b option)
get Opt (xopt, d) = x if xopt is SOME x, d otherwise.
i sSome xopt = true if xopt is SOME X, false otherwise.

val Of xopt = x if xopt is SOME x, raises Option otherwise.

filter p x = SOME x if p x is true, NONE otherwise.

map f xopt SOME(f x) if xopt is SOME x, NONE otherwise.

mapPartial f xopt = f x if xopt is SOME X, NONE otherwise.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

BINARY TREES

FP-11-69

Binary trees withdatatype declaration

@ Treeis a recursive datatype similar to the list

@ Atfirst, the following binary tree is declared: its leaves ampty, and in the nodes the left
subtree, the value of typa and the right subtree is defined in this order.

datatype 'a tree = L | B of 'a tree * 'a * 'a tree;

@ Let’s see the following tree:
12

/\
9 17
/\ /\
5 11 14 22
/\ VAN [\ VAN
3 7 16
PARNIVERN VAN

@ This tree can be described with theandB data constructors of the datatypetree as
introduced on next page.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-11-71

Binary trees withdatatype declaration (continued)

@ The textual representation of the tree structure is moratgla when the subtrees are given
names, and the complete tree is built from subtrees:

B(12
B(9 B(17
/\
B(5 B(11 B(14 B(22
2N 7/ ZZRN
/N Lo L N LoL)
B(3 B(7 B(16
NN 2N
LoD, L), LL),
val tr3 = B(L,3,L); val tr7 = B(L,7,L);
val tr5 = B(tr3,5,tr7); val trll = B(L,11,L);
val tr9 = B(tr5,9,tr1l); val trl6 = B(L,16,L);
val trl4 = B(L,14,tr16); val tr22 = B(L,22,L);

val trl7 = B(trl4,17,tr22); val trl2 = B(tr9,12,trl7);

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-11-70

Binary trees withdatatype declaration (continued)

B(B(B(B(L,3,L), The expression on the left side can't be easily

5, read. The textual description of the tree structure
B(L,7,L) becomes more convinient when the
), corresponding data constructors are written into
9, the figure.
B(L,11,L)
), B(12
12, /\
B(9 B(17
B(B(L, Py
14, B(5 B(11 B(14 B(22
AN 7/ ZRN
B(L,16,L) VAN o) AN o
) B(3 B(7 B(16
' NN ZRN
17, Lob, L) L),
B(L,22,L)

)
);

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-11-72

Binary trees withdatatype declaration (continued)

@ Declaration of other tree structures is also possible,Xamgple

@ it can be started with the value of tyjee, followed by the left then the right subtree,
@ |eaves can also store values,
@ empty stubs not containing a value can be described by

@ The following declaration declares a binary tree accordliniipe properties described above:
datatype 'a tree = E | L of 'a | B of 'a * 'a tree * ’a tree

@ Like the recursive functions, recursive data structurestrhave a non-recursive branch in the
declaration (trivial case).

@ Because of the absence of the non-recursive branch, tlefolj — sintactically correct —
declarations are useless:

datatype 'a badtree = B of 'a badtree * 'a * 'a badtree
datatype 'a badtree = L of 'a badtree
| B of 'a badtree * 'a * ’a badtree

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-11-73

Simple operations on binary trees

@ nodes counts the nodes in a tree. Let
datatype 'a tree = L | N of 'a * 'a tree * ’a tree

(* nodes : ’a tree -> int
nodes f = number of the nodes in the tree f *)

fun nodes (N(_, t1, t2)) = 1 + nodes t2 + nodes t1
| nodes L = 0

@ Accumulator-using version afodes (nodesa):

fun nodesa f =
let (* nodesO(f, n) = n + number of the nodes in the tree f
nodesO : ’'a tree * int -> int *)
fun nodesO (N(_, t1, t2), n) =
nodesO(tl, nodesO(t2, n+1))
| nodesO (L, n) = n
in nodesO(f, 0)
end

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1I-75
Simple operations on binary trees (cont'd.)

@ fulltree builds afull binary treeof depthn and numbers each node franto 2" — 1. In a full
binary tree, exactly two edges start from each node, andleatts on the same level.

(* fulltree : int -> 'a tree

fulltree n = full tree of depth n *)
fun fulltree n =

let fun ftree (_, 0) = L
| ftree (k, n) = N(k, ftree(2 *k, n-1), ftree(2 *k+1, n-1))

in

ftree(1, n)
end

@ reflect reflects the tree about the vertical axis.

(* reflect : 'a tree -> 'a tree
reflect t = the tree t reflected about the vertical axis *)
fun reflect L = L

| reflect (N(v,t1,t2)) = N(v, reflect t2, reflect t1)

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-II-74

Simple operations on binary trees (continued)

@ The number of the edges on the path (the length of the patim)tine root to a leaf in a tree is
called the level of the leaf. The biggest of the levels isezhthedepthof the tree.

@ depth calculates the depth of a tree

(* depth : 'a tree -> int

depth f = depth of the tree f *)
fun depth (N(_, t1, t2)) = 1 + Int.max(depth t2, depth t1)
| depth L = 0

@ Accumulator-using version afepth (deptha):

fun deptha f = let fun depthO (N(_, t1, t2), d) =
Int. max(depthO(t1, d+1), depth0(t2, d+1))
| depthO (L, d) = d
in
depthO(f, 0)
end

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1I-76
Creating a list from the elements of a binary tree

@ All three functions creatbsts from binary treesThey differ in when they take the elements sto
in the nodes, and the traversal order.

@ preorder takes the element first, then traverses the left subtresmyaitds the right one;
@ inorder first traverses the left subtree, then takes the elemenlilyfiraverses the right one
@ postorder first traverses the left subtree, then the right one, andstiideeelement in the enc

@ The versions not using an accumulator are simple, compséblerbut inefficient due to the use «
the operato@

(* preorder : 'a tree -> 'a list

preorder t = preorder list of the elements of the tree t *)
fun preorder L = []

| preorder (N(v,t1,t2)) = v :: preorder t1 @ preorder t2
(* inorder : 'a tree -> 'a list

inorder t = inorder list of the elements of the tree t *)
fun inorder L =]

| inorder (N(v,t1,t2)) = inorder t1 @ (v :: inorder t2)
(* postorder : 'a tree -> ’'a list

postorder t = postorder list of the elements of the tree t *)
fun postorder L = []
| postorder (N(v,t1,t2)) = postorder t1 @ (postorder t2 @ [v])

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1I-77

Creating a list from the elements of a binary tree (cont'd.)

@ |n the previous version ahorder |, if we don’t put the subexpressian :: inorder t2 of
the expressiomorder t1 @ (v :: inorder t2) into brackets, the compiler gives a
error message, because and@have the same precedence, so without the brackets it wguld
to evaluate the obviously incorrect subexpresgnomder t1 @ v

@ |n the following version ofnorder , which is roughly equivalent to its previous implementafi
we prependv] , alist with one element, instead of the elemend inorder t2

fun inorder L =]
| inorder (N(v,t1,t2)) = inorder t1 @ ([v] @ inorder t2)

However, this version igery volatile because its efficiency depends on the brackets. If we do
put the subexpressiqu] @ inorder t2 into brackets, the compiler will first evaluate the
subexpressiomorder t1 @ [v] , l.e. it appends a (usually) much longer list to one with ¢
single element!

@ For reasons similar to those mentioned, the presentecwmespostorder is alsoextremely
volatile! For if we don’t put the anyway inefficient subexpresspmstorder t2 @ [v] of
the expressionpostorder t1 @ (postorder 2 @ [v]) into brackets, then the
compiler first evaluates the subexpressigostorder t1 @ postorder t2 , l.e. appends
the two presumably long lists, and then appends the resutblihe list with a single element.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-11-79

Creating a binary tree from the elements of a llPreorder

@ The following functions transform a list intolzalanced binary treebalPreorder
ballnorder andbalPostorder ; the difference between them is the traversal order also
time.

@ (» balPreorder: 'a list -> 'a tree
balPreorder xs = preorder balanced tree
consisting of the elements of the list xs
*
)
fun balPreorder [] = L
| balPreorder (x::xs) =
let val k = length xs div 2
in
N(x, balPreorder(List.take(xs, K)),
balPreorder(List.drop(xs, k)))
end

@ Efficiency is slightly decreased by the fact tiat.take andList.drop sweep through the
first part of the list independenttyvice.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-11-78

Creating a list from the elements of a binary tree (cont'd.)

The versions using an accumulator are more difficult to ustded, but they amnore efficientmainly
in terms of stack usage.

(* preord : ’a tree * 'a list -> ’a list
preord(t, vs) = preorder list of the elements of the tree t,
prepended to the list vs *)

fun preord (L, vs) = vs
| preord (N(v,t1,t2), vs) = v:preord(tl, preord(t2,vs))

(* inord : ’a tree * ‘'a list -> 'a list
inord(t, vs) = inorder list of the elements of the tree t,
prepended to the list vs *)

fun inord (N(v,t1,t2), vs) = inord(tl, v:inord(t2,vs))
| inord (L, vs) = vs

(* postord : 'a tree * ‘'a list -> ’a list
postord(t, vs) = postorder list of the elements of the tree t,
prepended to the list vs *)
fun postord (N(v,t1,t2), vs) = postord(tl, postord(t2, v:: VS))

| postord (L, vs) = vs

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-11-80

take anddrop with one function:take’ndrop

@ |et’s write a function namethke’'ndrop , whose argument is a pair consisting of a list and ¢
integer, and whose result is a pair with the first member afi$tk elements of the list, and the
second member as the rest of the list.

(* take'ndrop : ’'a list * int -> 'a list * 'a list
take’ndrop(xs, k) = a pair with the first member as
the first k elements of xs,
and the second member as the rest of xs
*
)
fun take’ndrop (xs, k) =
let fun td (xs, 0, ts) = (rev ts, xs)
| td ([, _, ts) = (rev ts, [])
| td (x:xs, k, ts) = td(xs, k-1, x:ts)
in
td(xs, k, [I)
end

@ Due to the usage déke'ndrop |, specifically the pair returned, we need to modify the strect
of balPreorder

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-11-81

Creating a binary tree from the elements of a lstlPreorder revisited

@ There was this:

fun balPreorder [] = L
| balPreorder (x::xs) =
let val k = length xs div 2
in N(x, balPreorder(List.take(xs, k)),
balPreorder(List.drop(xs, k)))
end

@ ... which became this:

(* balPreorder: 'a list -> 'a tree
balPreorder xs = preorder ... of the list xs *)
fun balPreorder [] = L
| balPreorder (x::xs) =
let val k = length xs div 2
val (ts, ds) = take'ndrop(xs, k)
in N(x, balPreorder ts, balPreorder ds)
end

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-11-83

Deleting an element from a binary tree

@ Findinganelemenbf a given value with a recursive method is an easy task.

@ Neither isinserting a new elemeulifficult: we seek a leaf with a recursive method, and replac
with the new element. If the tree is sorted, we must pay atieno keep the sorting.

@ Removing an element element®f a given value with a recursive method is somewhat haréle
the value to be deleted is in the root of the subtree being Examthen we need foin the
subtrees of the tree falling into two pieces after we've perfed the deletion on both subtrees.

R

@ |tis possible to join the two subtrees before deleting tleeneint of the given value from the
resulting tree.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-11-82

Creating a binary tree from the elements of a list

@ (+ ballnorder: 'a list -> 'a tree
ballnorder xs = inorder balanced tree
consisting of the elements of the list xs
*
)
fun ballnorder [] = L
| ballnorder (xxs as x:xs) =
let val k = length xxs div 2
val ys = List.drop(xxs, k)
in
N(hd ys, ballnorder(List.take(xxs, k)),
ballnorder(tl ys))
end

@ (+ balPostorder: 'a list -> 'a tree
balPostorder xs = postorder balanced tree
consisting of the elements of the list xs
*)

fun balPostorder xs = balPreorder(rev xs)

@ Definingballnorder with take'ndrop is an exercise.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-11-84

Recursive deletion of an element from a binary tree (cont'd.

@ \We join the two trees resulting from the deletion wjitin : it destroys the left subtree, and
meanwhile puts its elements one-by-one into the right one.

(* join : 'a tree * 'a tree -> 'a tree

join(l, r) = tree created by joining the trees | and r *)
fun join (L, tr) = tr

| join (N(v, It, rt), tr) = N(v, join(lt, rt), tr)

@ remove removesll occurrences of the element of valuérom an unsorted binary tree.

(* remove : 'a * ’'a tree -> 'a tree
remove(i, t) = removes all occurrences of i from t *)
fun remove (i, L) = L
| remove (i, N(v,ltr)) =
if i<>v
then N(v, remove(i,lt), remove(i,rt))
else join(remove(i,lt), remove(i,rt))

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-11-85

Binary search treesillookup , binsert

@ Usually we search for an element of a given key in a sortedpiimae, therefore we need to
compare values, therefore the key searched for must bguality typgin this example, we use
the typestring).

@ The functions raise aexceptionif the element of the key searched for isn’t present in tee:tr
exception Bsearch of string

@ The functionblookup returns a value corresponding to a given key:

(* blookup : (string * 'a) tree * string -> 'a
blookup(t, b) = the value corresponding to the key b
in the tree t
*)

fun blookup (L, b) = raise Bsearch("LOOKUP: " ~ b)
| blookup (N((ax), t1, t2), b) =

ifb<a then blookup(tl,b)
else if a < b then blookup(t2, b)
else x;

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

EXCEPTION HANDLING

FP-11-86

Binary search treesqupdate

@ The functionbinsert inserts an element of a new key into a sorted binary treediésn’t exist:

(* binsert : (string * 'a) tree * (string * 'a) -> (string * 'a) tree
binsert(t, (b,y)) = the tree t extended with the new key-valu e pair (b,y) *)
fun binsert (L, (b,y)) = N((byy), L, L)
| binsert (N((a, x), t1, t2), (b)y)) =
if b<a then N((a, x), binsert(tl, (b,y)), t2)
else if a < b then N((a, x), t1, binsert(t2, (b,y)))
else (* a=b *) raise Bsearch("INSERT: " ~ b);

@ The functionbupdate writes a new value into an element of an existing key in a sidsteary
tree:

(* bupdate : (string * 'a) tree * (string * 'a) -> (string * 'a) tree
bupdate(t, (b,y)) = the tree t with the value y in place of
the value corresponding to the key b *)

fun bupdate (L, (by)) = raise Bsearch("UPDATE: " * b)
| bupdate (N((ax), t1, t2), (byy)) =
if b <a then N((a,x), bupdate(tl, (b,y)), t2)
else if a < b then N((ax), t1, bupdate(t2, (b,y)))
else (x azb *) N((by), t1, t2);

@ Making the functiongenericis an exercise.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-11-88

Exception handling

@ An exception is declared with the keywogdception |, raised with the keywordaise
handled in the expression introduced with the keywmaddle .

@ Exceptions are usually used for indicating errors, but welee them for handling backtracks a
well (example for the latter can be seen in the functibange on one of the following slides).

@ Exception declaration reminds usadtatype -declarationexception nane,;
exception nanme of ty.

@ Examples for declaring exceptiorsxception Change; exception Error of char
* int .

@ The exception constructor can be a constant or a functioampies:Change : exn , Error
: char * int -> exn

@ The exception declaration is a spedatatype -declaration, because in contrast to the latter
extendghe set of exception constructors dynamically.

@ For raising an exception, we must use the special exprebsminning with the keywordaise
@ Examples for raising an exceptioraise Change ,raise Error(#'N", 4)

@ (Hypothetic) type ofaise isexn -> 'a

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-11-89
Exception handling (cont'd.)

@ The outcome of applyincpise s the so-calle@xception packSince the exception pack is of
polymorphic type, it is compatible with all other types.

@ Handling exceptions reminds us of tbase -structure:E handle P1 => E1 | --- | Pn => En
@ |f Ereturns a "common” value, the exception handler simply fmdg the result.

@ |f the result ofE is anexception packSML tries to match it with the pattefdl, ---, Pn.

@ If Pi (1 <= i <= n)is the first matching pattern, the result of the exceptiamdher iSEi .
@ |If no patterns match the exception pack, the exception leapaisses it on.
@ Examples for handling exceptions:
@ coin :: change (coin::coinlist) (sum-coin)
handle Change => change coinlist sum
@ (fn i => exHan i handle Error(c, i) => (print(str c); i-1)) O
@ (Hypothetic) type ohandle isexn -> 'a

@ Let Ex be an exception of typexn , and lete be any expression; thenande in the expressior
handle Ex => ¢ (containing an exception handler) must be of same type.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-11-91

Exception handling (cont'd.)

@ Example for programming backtrack using exception haidlin
exception Change;

(* change : int list -> int -> int list
change coinlist sum = the coin-list containing the fewest po ssible coins
whose sum is 'sum’
PRE : coinlist = the coins for changing in decreasing order of value
sum >= 0
*)
fun change _ 0 =]
| change [] _ = raise Change
| change (coin::coinlist) sum =
if (* the actual coin is too large, we try the next one *)
coin > sum then change coinlist sum
(* if we manage to change starting with the actual coin, good;
if not, we restart at the actual point with the next coin *)
else coin :: change (coin::coinlist) (sum-coin)
handle Change => change coinlist sum;

change [50, 20, 10, 5, 2] 197 = [50, 50, 50, 20, 20, 5, 2];

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-11-90

Exception handling (cont'd.)

@ The next extract of program is an example for declaringjrrgiand handling an exception

exception Error of char *int;

fun exHan 0 = raise Error(#'N", 4)
| exHan ~9 = raise Error(#'M", 9)
| exHan n n;

fun exHandle i =
exHan i handle Error(#'N", i) => (print "N"; i)
| Error(#'M", i) => (print "M"; i-1);

exHandle 0 = 4;
exHandle ~9 = 8;
exHandle 7 = 7,

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-11-92

Exception handling (cont'd.)

@ The most frequent built-in exceptions

Name Operation that might evoke it

Bind In value declaration, the right side expression doesn’thndte left side pattern.
Chr chr pred succ

Div / div mod

Domain Value is out of domain.

Empty hd tl last

Fail compile load loadOne Fail : string -> exn

Interrupt Interrupt by ctrl/c.

lo Input/output errorlo : {cause : exn, function : string, name : string}
Match Pattern matching error icase andhandle , or in function application.
Option Error when applying a function of the libra@ption .

Overflow ~ + - » /[div mod abs ceil floor round trunc

Size A array concat fromList implode tabulate translate vector
Subscript copy drop extract nth sub substring take update

@ Fail andlo are ex. constr. functions, the others are ex. constr. corsstd typeexn .

@ Option can be used only with the nan@ption.Option unless we open the libra@ption

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

BACKTRACKING

n queens on a chessbhoard

FP-11-95

We can decide whether the new queen is atta
by the others with examining the vector.
We can place a new queen if:

1. The new queen is not in the same row as &

ckede want to place the new queen in the 1st rov
then we have to check the placed marked with
X. Including the new element, the list has 3
lr(?)I/ements. The element having indegannot be

of the others, so the new element of the lisg"e/tNers — 1, nors + 1, the element having index

cannot show up in the already built part (ta

”3 cannot be neither — 2 norn + 2.

of the list.
O 0 IIxl
2. The new queen cannot pe attacked diagonally ™" "7 ¢ ;**Iq* Lo
either. This means that if the newly placed L bbbt
queen is in theth row, the new (th) elemen = Lo
in the listiss, then the th element in the list 1o x|

cannot be nos-i , neithers+i .

e

The list can be built by a recursive algorithm.

The following example makes it clear:

Higher-level functional programming. BME VIK, Autumn 2006

(Functional programming)

FP-11-94
n queens on a chesshoard

How many ways arethere, to place n queensto a chessboard of sizen x n,
such that none of them attack each other?

@ There is exactly one queen in each column. @ We implement vectors with lists.

:Ne dﬁsc“bh‘? t::,e .chheslsboard W_'thr? vector ofg Itis easy to append an element to a list fron
'engt n, which'si t . N e.ments IS the row the left, for this reason we will flip our vectot
index of the queen in thieth column horizontally
(0 <=s<n,0<=i <n). '
P e s = R
@ Example fom=4: [310]2] 0 I lal |
e e
nl < 0 | [
e et f et [e e 3
21013]1] ol lal | | v I Tal
[[S ===> I e
0 > ni I oo tal 1l
[e S R T
Vilal | 1 |
===> [-
w1 Jal @ Thei th element in a vector of lengthis the
n-(i+1) th elementin the list.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-11-96
n queens on a chesshoard: ,attacked’-check

(* attacked : int list -> bool
attacked zs = true, if the (hd zs) queen is attacked by at least
one other queen in (tl zs)
*)
fun attacked [] = false
| attacked (z::zs) =
let (* att: int -> int -> int list -> bool
att s1 s2 rs = true, if the queen z is attacked
by a queen in rs
*)
fun att _ _ [] = false
| att s1 s2 (rirs) = z = r orelse
sl = r orelse
s2 = r orelse
att (s1-1) (s2+1) rs
in
att (z-1) (z+1) zs
end

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-11-97

n queens on a chessboard: producing a solution

exception Dead_end

(* queensO : int -> int list
queensO n = a solution for the "n queens problem" *)
fun queensO n =
let (* queen : int -> int list -> int list
queen z zs = a solution,
searching starts from placing queen to zth row, and the alrea
fun queen z zs =

dy placed queens are in

if z=n (=* backtracking is needed, if each row has been tried *)
then raise Dead_end
else if (* z+1 should be tried, if z::zs is attacked *)

attacked (z::zs) then queen (z+1) zs
else if length (z::zs) = n

then rev (z:zs) (* we have a solution *)
else (* continues placing the new queen from the Oth row,
and backtracks to the next row, if finds a dead-end *)
queen 0 (z:zs) handle Dead_end => queen (z+1) zs
in
(* starts with the Oth row *)
queen 0 []
end

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-11-99
n queens on a chessboard: producing all the solutions witktitzeking
(* queensl : int -> int list list
queensl n = the list of all the solutions for the "n queens prob lem" *)
fun queensl n =
let (* queen: int -> int list -> int list list
queen z zs: the list of all the solutions for the "n queens prob lem"
searching starts from placing queen to zth row,
and the already placed queens are in zs *)
fun queen z zs =
if
(* backtracking is needed, if z=0 and is attacked or if each row h as been tried *)

z = 0 andalso attacked zs orelse z = n
then raise Dead_end
else if length zs = n

then [rev zs] (* we have a solution, we return it in a list *)
else
(* continues with the next row, then appends the solution list. L)

(queen (z+1) zs handle Dead_end => [) @
(* ..to the solutions which comes from placing the next queen f
(queen 0 (z::zs) handle Dead_end => [])

rom the Oth row *)

in
(* starts with the Oth row *)
queen 0 []

end

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-11-98

n queens on a chessboard: producing a solution

exception Dead_end

(* queensO : int -> int list

queensO n = a solution for the "n queens problem" *)
*
)
fun queensO n =

let (* queen : int -> int list -> int list

queen z zs = a solution,
fun queen z zs =

if (* backtracking is needed, if z=0 and is attacked *)
z = 0 andalso attacked zs orelse
(* backtracking is needed, if each row has been tried *)
z=n

then raise Dead_end
else if length zs = n

then rev zs (* we have a solution *)
else (* continues placing the new queen from the Oth row,
and backtracks to the next row, if finds a dead-end *)
queensO 0 (z::zs) handle Dead_end => queen (z+1) zs
in
(* starts with the Oth row *)
queen 0 []
end

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-11-100

n queens on a chessboard: producing all the solutions in &f liists

The pattern used in the previous example can be used many, twigin this simple case, it is
unnecessary. Instead of using exceptions, we could sirepliyrr an empty list: the exception handle
did the same.

(* queens2 : int -> int list list
queens2 n = all the solutions for the "n queens problem"
*
)
fun queens2 n =
let (* queen: int -> int list -> int list list
queen z zs: all the solutions for the "n queens problem"
searching starts from placing queen to zth row,
and the already placed queens are in zs *)
fun queen z zs =
if z = 0 andalso attacked zs orelse z = n
then []
else if length zs = n
then [rev zs]
else queen (z+1) zs @ queen 0 (z:zs)
in
queen 0 []
end

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

n queens on a chesshoard: producing all the solutions in af lists

FP-11-101

With using accumulator:

(* queens3 : int -> int list list
queens3 n = a feladvany 0sszes megoldasanak listaja
n vezér esetén
*)
fun queens3 n =
let (* queen: int -> int list -> int list list
queen z zs zss: all the solutions for the "n queens problem”
searching starts from placing queen to zth row,
and the already placed queens are in zs, appended before zss
fun queen z zs zss =
if z = 0 andalso attack zs orelse z = n
then zss
else if length zs = n
then rev zs :: zss
else queen 0 (z:zs) (queen (z+1) zs zss)
in
queen 0 1]
end

*)

Higher-level functional programming. BME VIK, Autumn 2006

(Functional programming)

FP-11-103

Set operations: ,is member?isMem) and ,new member’riewMemn

@ isMem returns true, if the element is found in the set

(* isMem : "a * “a list -> bool
isMem(x, ys) = x is an element of ys
*)
fun op isMem (_, []) = false
| op isMem (x, y:ys) = x =y orelse op isMem(x, ys)
infix isMem

Remark: without thep operator, after thenfix ~ declaration the function definition couldn’t be re-comgile

@ newMeninserts a new element in the list, if it isn't yet a member of it

(* newMem : "a x "a list -> "a list
newMem(x, xs) = union of [x] and xs sets as a list

*)

fun newMem (x, xs) = if x isMem xs
then xs
else x:xs

newMencreates a set.

Higher-level functional programming. BME VIK, Autumn 2006

(Functional programming)

SET OPERATIONS

FP-1-104
Set operations: ,set from listsgtof)
@ setof makes a set from a list, with filtering out multiple occurenddot efficient.
(* setof : "a list -> "a list
setof xs = set of elements found in xs
*)
fun setof [] =]
| setof (x::xxs) = newMem(x, setof xs)
@ We define five set operations:
@ union (nion , SuT),
@ intersectionifiter ,SnT),
@ is-subset?i¢Subset ,7 C 95),
@ are-equal?i¢SetEq , S =1),
Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-11-105

Set operations: ,union”union) and ,intersection”ifiter)

@ We store our sets as lists, later we’ll choose better reptasen, for example ordered lists or
trees.

@ Union of two sets:
(* union : "a list * "a list -> "a list
union(xs, ys) = union of the sets xs and ys
*)
fun union ([], ys) = ys
| union (x::xs, ys) = newMem(x, union(xs, ys))

@ |ntersection of two sets:

(* inter : "a list * "a list -> "a list
inter(xs, ys) = intersection of the sets xs and ys
*)
fun inter ([,) =1
| inter (x::xs, ys) = let val zs = inter(xs, ys)
in

if x isMem ys then x:zs else zs
end

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

SIMULTANEOUS DECLARATION

FP-11-106

Set operations: ,is subset of AGubset) és ,are equal?’i§SetEq)

@ |s a set a subset of another?

(* isSubset : "a list * "a list -> bool
isSubset (xs, ys) = true, if the set of the elements in xs
are a subset of the set ys
*
)
fun op isSubset ([],) = true
| op isSubset (x:xs, ys) = (x isMem ys) andalso
op isSubset(xs, ys)

infix isSubset

@ Checking the equality of two sets. Checking the equalitywaf lists is built-in SML, but we can't
use that, because for example the §&#] and[4,3] are equal, although their lists aren't.

(* isSetEq : "a list * "a list -> bool
isSetEq(xs, ys) = the set of elements in xs is equal to
the set of elements in ys
*)

fun isSetEq (xs, ys) = (xs isSubset ys) andalso (ys isSubset x S)

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-11-108

Simultaneous declaration

@ Types and values can be declared simultaneously, with tiseend keyword.
@ See the following declarations:

type row = int; type column = int;

datatype fa = L | B of fa * fa;

datatype 'a stack = >| | >> of 'a * ‘'a stack;
val vl = "a"; val v2 = "z"

fun f1 i =i +1; fun f2 i =1i - 1;

SML evaluates these in their order in the source code.

type sor = int and osz = int;

datatype fa = L | B of fa * fa and
'a verem = >| | >> of 'a * 'a verem;
val vl = "a" and v2 = "z

fun f1 i =i +1 and f2 i =i - 1;

The declarations separated by #rel keyword are evaluated simultaneously.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-11-109

Simultaneous declaration

@ We have to use simultaneous declaration for defining mytwadlursive functions. Example:

fun even 0 = true | even n = odd(n-1)
and odd 0 = false | odd n = even(n-1);

@ We can use simultaneous declaration to exchange two or naone bindings. Example:
val vl = "a"; val v2 = "z"; val vl = v2 and v2 = vi;

@ We use simultaneous declaration if we want top-down desighe source code. Example:

fun length zs = len zs 0 THE ORDERYPE
and len [J i =i | len (_ : xs)i = len xs (i+1);
@ Polymorphic functions are treated differently by sequaraind simultaneous declaration, becat
SML carries out its type-deriving method for the whole exgsien. Example:
fun id x = x; fun hi () = id 3; fun nr () = id 4.0;
fun id x = x and hi () =id 3 and nr () = id 4.0;
After evaluating the first lined hastypéa -> 'a . Inthe case of the second lird, should
have typesnt -> int andreal -> real simultaneously, which leads to a type error.
Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)
FP-1I-111
Theorder type
The definition of theorder type: (se€zeneral.sig)
datatype order = LESS | EQUAL | GREATER
[order] is used as the return type of comparison functions.
Examples from the SML Basis Library:
Int.compare sint * int -> order
Char.compare . char * char -> order
Real.compare . real * real -> order
String.compare : string * string -> order SORTING LISTS
Time.compare . time * time -> order

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

Sorting lists

FP-11-113 FP-1I-114

Insertion sort

@ i nssort (Insertion sort),

@ sel sort (selection sort),

@ qui cksort (quicksort),

@ t nsort (top-down mergesort),
@ bmsort (bottom-up merge sort),

@ smsort (smooth sort).

@ Theins auxiliary function inserts the elemextto its proper place in a list:

(* ins : real * real list -> real list
ins (X, ys) = x inserted in ys to its proper place
according to the <= relation
PRE: ys is sorted according to the <= relation *)
fun ins (x, y:ys) = if x <= y then x:y:ys else y:ins(x, ys)
| ins (x : real, [I) = [X]

@ We usenssort recursively to sort the tail of the list. Execution time($n?):

(* inssort : (a * 'b list -> 'b list) -> 'a list -> b list
inssort f xs =
the sorted list consisting of the elements of xs
and f used as an insertion function *)
fun inssort f (x::xs) = f(x, inssort f xs)
| inssort _ [= [];

@ Example for usingnssort
inssort ins [4.24, 4.1, 5.67, 1.12, 4.1, 0.33, 8.0];

Higher-level functional programming. BME VIK, Autumn 2006

Insertion sort, generic variant

(Functional programming) Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-11-115 FP-11-116

Insertion sort, generic variant

@ We make thens function generic:

(* ins : (a * 'a -> bool) -> 'a * ‘'a list -> 'a list
ins cmp (X, ys) = x inserted in ys to its proper place
according to the cmp relation
PRE: ys is sorted according to the cmp relation
fun ins cmp (x, ys) =
let fun insO (y:ys) =
if cmp(x, y) then x:y:ys else y:insO ys
| insO [= [
in insO ys
end

@ With this, a new variant oihssort

(* inssort : (a * 'a -> bool) -> 'a list -> 'a list
inssort cmp xs = the sorted list consisting of
the elements of xs, according to cmp *)

fun inssort cmp (x::xs) = ins cmp (X, inssort cmp xs)
| inssort _] =[]

@ The previous variants afissort first take the list apart to elements, then they build theltesu
list from the end.

@ This right-recursive varianfr{ssort2) uses less stack, because it inserts the elements into
result list while walking on the list from the left to the rigl{later we’ll compare execution times

) (inssort2 : (a * 'a -> bool) -> 'a list -> 'a list
inssort2 cmp xs =
the sorted list consisting of the elements of xs
according to cmp *)
fun inssort2 cmp xs =
let (* sort : ’a list -> 'a list -> 'a list
sort xs zs = the elements of xs inserted into zs,
in their proper place according to the cmp relation
PRE: zs is sorted according to cmp *)
fun sort (x::xs) zs = sort xs (ins cmp (X, zs))
| sort [] zs = zs
in
sort xs []
end

Higher-level functional programming. BME VIK, Autumn 2006

(Functional programming) Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

Insertion sort withfoldr -rel andfoldl

FP-1I-117

@ foldl uses its second argument as an accumulator, it uses leksistan sort longer lists.

fun inssortR cmp = foldr (ins cmp) [I;
fun inssortL cmp = foldl (ins cmp) [];

@ Examples foinsort andinsort2

inssort op<= [4.24, 4.1, 5.67, 1.12, 4.1, 0.33, 8.0];
inssort2 op>= [4, 4, 5, 1, 0, 8];
inssort op< (explode "gwerty");

@ Examples for usingoldr andfoldl

fun inssortRi cmp = foldr (ins cmp) [];
fun inssortLr cmp = foldl (ins cmp) ([] : real list);

inssortRi op>= [4, 4, 5, 1, 0, 8];
inssortLr op>= [4.24, 4.1, 5.67, 1.12, 4.1, 0.33, 8.0];

Higher-level functional programming. BME VIK, Autumn 2006

Measuring and comparing execution times

(Functional programming)

FP-11-119

@ We measure time with the following functions:
app load ['Timer","Time","Int"];

fun runTime (sort, sortFn) (cmp, cmpFn) (xs, kind) =
let val starttime = Timer.startCPUTimer()
val zs = sort cmp Xs
val usr=tim,... = Timer.checkCPUTimer starttime

"Int sort with " ~ sortFn ~ ", " ~ cmpFn 7

", length = " ~ Int.toString(length xs) ~ " (" »

kind ~ "), time = " A Time.fmt 2 tim ~ " sec\n"
end;

val tIN =
runTime (inssort, "inssort") (op>=, "op>=") (xs2000N, "in
val 12N =

runTime (inssort2, "inssort2") (op>=, "op>=") (xs2000N, "

val t1IR =
runTime (inssort, "inssort") (op>=, "op>=") (xs2000R, "ra
val 2R =

runTime (inssort2, "inssort2") (op>=, "op>=") (xs2000R, "

creasing");
increasing");
ndom");

random");

Higher-level functional programming. BME VIK, Autumn 2006

(Functional programming)

Measuring and comparing execution times

FP-11-118

@ Random.randomlist (n, gen)
val xs2000R =

@ Sorting lists of length 2000, one filled with random elemearid a reversed sorted list.

returns a list of n random numbers in the interval [O,

Random.rangelist (1, 100000) (2000, Random.newgen());

@ The--- operator generates a list of increasing numbers:

infix ---;
fun fm --- to =
let fun upto to zs =

if to < fm then zs else upto (to-1) (to::zs)

in
upto to []
end;

val xs2000N = 1 --- 2000;

Higher-level functional programming. BME VIK, Autumn 2006

Measuring and comparing execution times

(Functional programming)

FP-11-120

@ Soring the reversely sorted list with 2000 elements withrtbie-right-recursive version of

inssort takes more than 5s, while with the right-recursive versigakes only 0.01s. (linux,

233 MHz-es Pentium)

Int sort with inssort, op>=, length = 2000 (increasing), tim
Int sort with inssort2, op>=, length = 2000 (increasing), ti
Int sort with inssortRi, op>=, length = 2000 (increasing), t
Int sort with inssortLi, op>=, length = 2000 (increasing), t

The difference disappears, if we sort the lists with randéements.

Int sort with inssort, op>=, length = 2000 (random), time = 2.
Int sort with inssort2, op>=, length = 2000 (random), time = 2
Int sort with inssortRi, op>=, length = 2000 (random), time =
Int sort with inssortLi, op>=, length = 2000 (random), time =

me 0.01 sec
ime 5.14 sec

e = 5.18 sec
ime = 0.01 sec

39 sec
.26 sec
2.40 sec
2.24 sec

Higher-level functional programming. BME VIK, Autumn 2006

(Functional programming)

FP-11-121

Selection sort

(* selsort : (a * 'a -> order) -> 'a list -> 'a list
selsort cmp xs = the elements of xs in increasing order
*)
fun selsort cmp xs =
let
(» max : 'a * ’'a ->'a
max (x, y) = the max of x and y, according to cmp
*)
fun max (x, y) = if cmp(x, y) = GREATER then x else y
(* mn:'a =* 'a->'a
min (x, y) = the min of x and y, according to cmp
*)
fun min (x, y) = if cmp(x, y) = LESS then x else y
(* maxSelect : 'a * ’a list * ’a list -> 'a * ’a list
maxSelect (x, ys, zs) =
a pair, consisting of the largest element of (x:ys) accordi ng to cmp,
and a list consisting of the elements of x:ys and zs *)

fun maxSelect (x, [], zs) = (x, zs)
| maxSelect (x, y:ys, zs) =
maxSelect(max(x, y), ys, min(x,y):zs);

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-11-123
Quicksort without using accumulator

(* quicksortl cmp xs = the elements of xs sorted according to cmp
quicksortl : (a * 'a -> order) -> ’'a list -> 'a list *)
fun quicksortl cmp xs =
let (* gs : 'a list -> 'a list

gs ys =
the elements of ys sorted according to cmp
*
)
fun gs (m:ys) =
let (* partition : 'a list * 'a list * 'a list -> 'a list
partition (xs, Is, rs) = a pair consisting of
the elements of xs which are smaller than m, appended in front of s,
and the rest, appended in front of rs *)
fun partition (x::xs, Is, rs) =
if cmp(x, m) = LESS then partition(xs, x:ls, rs)
else partition(xs, Is, x:rs)
| partition ([], Is, rs) = gs Is @ (m:gs rs)
in
partition (ys, [I,)
end
_ las =1
in
gs xs
end;

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-11-122
Selection sort, continued

(* sSort : 'a list * ’a list -> 'a list
sSort (xs, ws) =
the elements of xs appended in front of ws, in increasing orde r o)

fun sSort ([, ws) = ws
| sSort (x:xs, ws) =
let val (z, zs) = maxSelect(x, xs, [])

in
sSort (zs, z::ws)
end
in
sSort (xs, [])
end;

app load ["Int","Char","Real"];

selsort Int.compare [1,2,3,4,5,6,7,8,9];

selsort Int.compare [9,8,7,6,5,4,3,2,1];

selsort Real.compare [4.5,6.7,3.6,4.3,1.2,0.9,8.9,9.8 ,2.0;
selsort Char.compare (explode "Apple Pear Plum");

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-11-124
Quicksort with accumulator

(* quicksort2 cmp xs = the elements of xs sorted according to cmp

quicksort2 : (a * 'a -> order) -> 'a list -> 'a list *)
fun quicksort2 cmp xs =
let (* gs : 'a list -> a list -> 'a list
gs ys zs =
the elements of ys sorted according to cmp, appended in front of zs
*
)
fun gs (m:ys) zs =
let (* partition : 'a list * 'a list * 'a list -> 'a list
partition (xs, Is, rs) = a pair consisting of
the elements of xs which are smaller than m, appended in front of s,
and the rest, appended in front of rs *)

fun partition (x::xs, Is, rs) =
if cmp(x, m) = LESS then partition(xs, x:ls, rs)
else partition(xs, Is, x::rs)

| partition ([], Is, rs) = gs Is (m:: gs rs zs)
in
partition (ys, [I, [I)
end
las] zs = zs
in
gs xs []

end;

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-1I-125
Measuring and comparing execution times
app load ['Listsort","Int"];
val t1 = futldo (inssort2, “inssort2") (op>=, "op>=") (xs20 O00R, "random");
(* ~ 2 M comparisons! x)
val t3 = futldo (quicksort2, "quicksort2")
(Int.compare, "Int.compare”) (xs2000R, "random");
val t4 = futldo (Listsort.sort, "Listsort.sort")
(Int.compare, "Int.compare”) (xs2000R, "random");
(*» ~ 300 E comparisons *)
Int sort with inssort2, op>=, length = 2000 (random), time = 2 .30 sec
Int sort with quicksortl, Int.compare, length = 20000 (rand om), time = 2.18 sec
Int sort with quicksort2, Int.compare, length = 20000 (rand om), time = 1.72 sec

Int sort with Listsort.sort, Int.compare, length = 20000 (r andom), time = 1.76 sec

27.13 sec
32.59 sec

200000 (ran dom), time
200000 (ran dom), time

Int sort with quicksort2, Int.compare, length
Int sort with quicksortl, Int.compare, length

t7 = futldo (Listsort.sort, "Listsort.sort") (Int.com pare, "Int.compare")
(Random.rangelist (1, 100000) (200000, Random.newgen()) , "random");

I Uncaught exception:

! Out_of_memory

val

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-11-127

Top-down merge sort

@ The ,top-down merge sort” is efficient, if the two lists arernsfarly the same length.

(* tmsort xs = the elements of xs sorted according to <=
tmsort : int list -> int list
*)
fun tmsort xs = let val h = length xs
val k = h div 2

in
if h>1
then merge(tmsort(List.take(xs, k)),
tmsort(List.drop(xs, Kk)))
else xs
end,;

@ |t needsO(n - logn) steps in the worst case.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

FP-11-126

Merge sort

@ For the merge sort, we need a function which unifies two sdigesi(merges the lists).

(* merge(xs, ys) = xs and ys merged according to <=

merge : int list * int list -> int list
*)
fun merge (XXs as Xx:Xs, yys as y:ys)=
if x <=y

then x::merge(xs, yys)
else y:merge(xxs, ys)
| merge ([l, ys) = ys
| merge (xs, [I) = xs;

@ |nefficient, if we store the partial results in the stack.

@ The result must be reversed if we use an accumulator.

Higher-level functional programming. BME VIK, Autumn 2006 (Functional programming)

