Agner Krarup Erlang (1878-1929)

Csaba Hoch (Erlang Solutions)

Concurrency in Erlang/OTP

&M © 1999-2016 Erlang Solutions Ltd. (Image source: Wikipedia)

https://en.wikipedia.org/wiki/Agner_Krarup_Erlang

Overview

1. Introduction
2. Processes - language constructs

3. OTP (Open Telecom Platform) - libraries

W © 1999-2016 Erlang Solutions Ltd.

About me

i Budapest University
~ of Technology

/ U'Dd EOOI'IOI‘MCSX ' “‘ % | \ ' ‘ /,./, A ‘,r .~ Q)
v i ki é | PNE -~ ;i?"' ‘:" <
/ - L“"f' oo A %’ [

k.,
D B At B l;rm
oy, ctor Business
r'llyl tér @ Hotel Budapest

k'Gyobyfirds:
Budapest®

"’bov.;; T —
— Dombovén Way

(Image source: Google Maps)

© 1999-2016 Erlang Solutions Ltd. 3

SOLUTIONS

http://maps.google.com

Erlang Solutions

~100 employees f¢
Consulting
Development

Research
Support

]] OUR OFFICES
Training

Organizing conferences

W © 1999-2016 Erlang Solutions Ltd. 4

SSSSSSSSS

Erlang key features

e Concurrent (processes)
e Multi-core (an Erlang VM can use many cores)

e Distributed (Erlang VMs can easily communicate
with each other)

e Makes it easier to build scalable, fault-tolerant
systems

(Image source: Wikipedia)

W © 1999-2016 Erlang Solutions Ltd. 5

https://en.wikipedia.org/wiki/Key_(lock)

Overview

2. Processes - language constructs

W © 1999-2016 Erlang Solutions Ltd.

The actor model

e Processes are isolated
e Processes communicate via messages (no shared

memory!)

W © 1999-2016 Erlang Solutions Ltd. 7

Creating and terminating processes

e Start a process:

spawn(fun loop/0) - Pid

e Each process has a pid ("process identifier”; e.qg.
<0.25.0>)

e A process terminates when...

— there is no more code to execute (“normal”)
— an error happens and is not caught
— exit(Pid, Reason) is called

— exception: if trap_exit is ‘true’ and Reason is not
‘kill’ = only a message is sent

W © 1999-2016 Erlang Solutions Ltd.

Messages

e Each process has a mailbox which stores the
messages sent to the process

e Sending a message to a process:
Pid ! {get id, MyPid}
e Receiving a message:

receilive
Message —>

end

W © 1999-2016 Erlang Solutions Ltd.

Processes are cheap

RAM footprint per unit of concurrency (approx)
Haskell Threadld + MVar (GHC 7.6.3, 64-bit)

1.3KB
2.6 KB
8.0 KB
64.0 KB
64.0 KB

Erlang process (64-bit)

Go goroutine

Java thread stack (minimum)
C pthread stack (minimum)

1 MB
8 MB

SSSSSSSSS

Java thread stack (default)

C pthread stack (default, 64-bit Mac OS X)

© 1999-2016 Erlang Solutions Ltd.

(Data&Diagram source: Bob Ippolito’s presentation)

10

http://bob.ippoli.to/intro-to-erlang-2013/%23/cost-of-concurrency

Implementation

e The Erlang VM has schedulers

— Erlang VM = OS process
— Scheduler = OS thread
— ldea: one scheduler = one CPU core

W © 1999-2016 Erlang Solutions Ltd.

Let’s write a server process!

e Processes can live run forever using recursion

e Best practice: modules should provide interface
functions

e Registered names:

— Processes can register an atom as their name:
register(id_server, self())

— Other processes can send messages to them using
this name:

id _server ! {get _id, MyPid}

W © 1999-2016 Erlang Solutions Ltd. 12

Process links

e Processes can be linked: if one crashes, the other
one will be terminated too

link(Pid)
spawn_link(fun loop/0) - Pid

e trap_exit is useful to stop the propagation
LINK

By———®
>y
@ ~— {'EXIT", B, Reagon} -—-—/ ,\

(Image source: Learn You Some Erlanqg)

W © 1999-2016 Erlang Solutions Ltd. 13

http://learnyousomeerlang.com/errors-and-processes%23links

Hot code loading

loo?(S) ->

7MODULE Myfuc\()

not Cond -> 7MODULE looP(S) L

end.

ooP(S) ->

‘new’ becomes the default

(Image source: Learn You Some Erlanq)

&(M © 1999-2016 Erlang Solutions Ltd. 14

SSSSSSSSS

http://learnyousomeerlang.com/designing-a-concurrent-application

Overview

3. OTP (Open Telecom Platform) - libraries

W © 1999-2016 Erlang Solutions Ltd.

|5

OTP - Open Telecom Platform

e Design principles
e Generic process templates (behaviours)

— Server processes: gen_server, gen_fsm, gen_event
— Supervisors

o EtcC.

W © 1999-2016 Erlang Solutions Ltd.

|6

gen_server

e Server processes have common code

e This common code was extracted into the
gen_server module

e Using gen_server, the programmer implements
only callback functions

— These callbacks will be called by the gen_server
module

W © 1999-2016 Erlang Solutions Ltd.

|7

Supervisors

e What should happen when a process crashes?

— We should try to restart it (a few times)
— Maybe we should also restart related processes

— If it still crashes, let's try to restart the component
that contains the process...

W © 1999-2016 Erlang Solutions Ltd.

18

Supervisors

e Using supervisors, the programmer organizes the
processes into a tree, and specifies the
followings:

— In what order should the processes be (re)started
and stopped?

— How many times should we try to restart the
processes?

— Which processes should we
restart when restarting a process?

S_)?Qf\'s

"w ckef
W © 1999-2016 Erlang Solutions Ltd.

(Image source: Learn You Some Erlanq)

http://learnyousomeerlang.com/supervisors%23from-bad-to-good

Erlang/OTP - a few other things

e Distribution

e ETS: term storage

e Mnesia: distributed database
e OTP applications:

— Components that can be started/stopped
— They can be reused

e OTP releases:

— Release = a system consisting of applications
— One Erlang VM executes one release

W © 1999-2016 Erlang Solutions Ltd.

20

Eifang

S u m m a ry Software for a Concurrent World
Second Edition .
P Joe Armslma
‘s b & =

— Actor model: messages
— Start, termination
— Registration, links
— Hot code loading

o OTP

— gen_server
— Supervisors

W © 1999-2016 Erlang Solutions Ltd. 21

SOLUTIONS

