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Overview

1. Introduction
2. Processes - language constructs

3. OTP (Open Telecom Platform) - libraries
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Erlang key features

e Concurrent (processes)
e Multi-core (an Erlang VM can use many cores)

e Distributed (Erlang VMs can easily communicate
with each other)

e Makes it easier to build scalable, fault-tolerant
systems

(Image source: Wikipedia)
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Overview

2. Processes - language constructs
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The actor model

e Processes are isolated
e Processes communicate via messages (no shared

memory!)
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Creating and terminating processes

e Start a process:

spawn(fun loop/0) - Pid

e Each process has a pid ("process identifier”; e.qg.
<0.25.0>)

e A process terminates when...

— there is no more code to execute (“normal”)
— an error happens and is not caught
— exit(Pid, Reason) is called

— exception: if trap_exit is ‘true’ and Reason is not
‘kill’ = only a message is sent
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Messages

e Each process has a mailbox which stores the
messages sent to the process

e Sending a message to a process:
Pid ! {get id, MyPid}
e Receiving a message:

receilive
Message —>

end
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Processes are cheap

RAM footprint per unit of concurrency (approx)
Haskell Threadld + MVar (GHC 7.6.3, 64-bit)

1.3KB
2.6 KB
8.0 KB
64.0 KB
64.0 KB

Erlang process (64-bit)

Go goroutine

Java thread stack (minimum)
C pthread stack (minimum)

1 MB
8 MB

SSSSSSSSS

Java thread stack (default)

C pthread stack (default, 64-bit Mac OS X)
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Implementation

e The Erlang VM has schedulers

— Erlang VM = OS process
— Scheduler = OS thread
— ldea: one scheduler = one CPU core
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Let’s write a server process!

e Processes can live run forever using recursion

e Best practice: modules should provide interface
functions

e Registered names:

— Processes can register an atom as their name:
register(id_server, self())

— Other processes can send messages to them using
this name:

id _server ! {get _id, MyPid}
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Process links

e Processes can be linked: if one crashes, the other
one will be terminated too

link(Pid)
spawn_link(fun loop/0) - Pid

e trap_exit is useful to stop the propagation
LINK

By———®
>y
@ ~— {'EXIT", B, Reagon} -—-—/ ,\

(Image source: Learn You Some Erlanqg)
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http://learnyousomeerlang.com/errors-and-processes%23links

Hot code loading

loo?(S) ->

7MODULE Myfuc\()

not Cond -> 7MODULE looP(S) L

end.

ooP(S) ->

‘new’ becomes the default

(Image source: Learn You Some Erlanq)
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http://learnyousomeerlang.com/designing-a-concurrent-application

Overview

3. OTP (Open Telecom Platform) - libraries
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OTP - Open Telecom Platform

e Design principles
e Generic process templates (behaviours)

— Server processes: gen_server, gen_fsm, gen_event
— Supervisors

o EtcC.
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gen_server

e Server processes have common code

e This common code was extracted into the
gen_server module

e Using gen_server, the programmer implements
only callback functions

— These callbacks will be called by the gen_server
module
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Supervisors

e What should happen when a process crashes?

— We should try to restart it (a few times)
— Maybe we should also restart related processes

— If it still crashes, let's try to restart the component
that contains the process...
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Supervisors

e Using supervisors, the programmer organizes the
processes into a tree, and specifies the
followings:

— In what order should the processes be (re)started
and stopped?

— How many times should we try to restart the
processes?

— Which processes should we
restart when restarting a process?
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Erlang/OTP - a few other things

e Distribution

e ETS: term storage

e Mnesia: distributed database
e OTP applications:

— Components that can be started/stopped
— They can be reused

e OTP releases:

— Release = a system consisting of applications
— One Erlang VM executes one release
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S u m m a ry Software for a Concurrent World
Second Edition .
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— Actor model: messages
— Start, termination
— Registration, links
— Hot code loading

o OTP

— gen_server
— Supervisors
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