
Csaba Hoch (Erlang Solutions)

© 1999-2016 Erlang Solutions Ltd.

Concurrency in Erlang/OTP

Agner Krarup Erlang (1878-1929)

(Image source: Wikipedia)

https://en.wikipedia.org/wiki/Agner_Krarup_Erlang

© 1999-2016 Erlang Solutions Ltd.

Overview

1. Introduction

2. Processes – language constructs

3. OTP (Open Telecom Platform) – libraries

2

© 1999-2016 Erlang Solutions Ltd.

About me

3

ELTE IK

Ericsson

Erlang Solutions

(Image source: Google Maps)

http://maps.google.com

© 1999-2016 Erlang Solutions Ltd.

Erlang Solutions

4

• ~100 employees
• Consulting
• Development
• Research
• Support
• Training
• Organizing conferences

OUR OFFICES

our HQ

© 1999-2016 Erlang Solutions Ltd.

Erlang key features

• Concurrent (processes)
• Multi-core (an Erlang VM can use many cores)
• Distributed (Erlang VMs can easily communicate

with each other)
• Makes it easier to build scalable, fault-tolerant

systems

5

(Image source: Wikipedia)

https://en.wikipedia.org/wiki/Key_(lock)

© 1999-2016 Erlang Solutions Ltd.

Overview

1. Introduction

2. Processes – language constructs

3. OTP (Open Telecom Platform) – libraries

6

© 1999-2016 Erlang Solutions Ltd.

The actor model

• Processes are isolated
• Processes communicate via messages (no shared

memory!)

7

P1 P2

P3

© 1999-2016 Erlang Solutions Ltd.

Creating and terminating processes

• Start a process:

• Each process has a pid ("process identifier"; e.g.
<0.25.0>)

• A process terminates when...
- there is no more code to execute (“normal”)
- an error happens and is not caught
- exit(Pid, Reason) is called

- exception: if trap_exit is ‘true’ and Reason is not
‘kill’ → only a message is sent

8

spawn(fun loop/0) → Pid

© 1999-2016 Erlang Solutions Ltd.

Messages

• Each process has a mailbox which stores the
messages sent to the process

• Sending a message to a process:  

• Receiving a message:

9

Pid ! {get_id, MyPid}

receive
 Message ->
 ...
end

© 1999-2016 Erlang Solutions Ltd.

Processes are cheap

10

(Data&Diagram source: Bob Ippolito’s presentation)

http://bob.ippoli.to/intro-to-erlang-2013/%23/cost-of-concurrency

© 1999-2016 Erlang Solutions Ltd.

Implementation

• The Erlang VM has schedulers
- Erlang VM = OS process
- Scheduler = OS thread
- Idea: one scheduler = one CPU core

11

© 1999-2016 Erlang Solutions Ltd.

Let’s write a server process!

• Processes can live run forever using recursion
• Best practice: modules should provide interface

functions
• Registered names:

- Processes can register an atom as their name:

- Other processes can send messages to them using
this name:

12

register(id_server, self())

id_server ! {get_id, MyPid}

© 1999-2016 Erlang Solutions Ltd.

Process links

• Processes can be linked: if one crashes, the other
one will be terminated too

• trap_exit is useful to stop the propagation

13

link(Pid)
spawn_link(fun loop/0) → Pid

(Image source: Learn You Some Erlang)

http://learnyousomeerlang.com/errors-and-processes%23links

© 1999-2016 Erlang Solutions Ltd.

Hot code loading

14

(Image source: Learn You Some Erlang)

http://learnyousomeerlang.com/designing-a-concurrent-application

© 1999-2016 Erlang Solutions Ltd.

Overview

1. Introduction

2. Processes – language constructs

3. OTP (Open Telecom Platform) – libraries

15

© 1999-2016 Erlang Solutions Ltd.

OTP – Open Telecom Platform

• Design principles
• Generic process templates (behaviours)

- Server processes: gen_server, gen_fsm, gen_event
- Supervisors

• Etc.

16

© 1999-2016 Erlang Solutions Ltd.

gen_server

• Server processes have common code
• This common code was extracted into the

gen_server module
• Using gen_server, the programmer implements

only callback functions
- These callbacks will be called by the gen_server

module

17

© 1999-2016 Erlang Solutions Ltd.

Supervisors

• What should happen when a process crashes?
- We should try to restart it (a few times)
- Maybe we should also restart related processes
- If it still crashes, let's try to restart the component

that contains the process...

18

© 1999-2016 Erlang Solutions Ltd.

Supervisors

• Using supervisors, the programmer organizes the
processes into a tree, and specifies the
followings:
- In what order should the processes be (re)started

and stopped?
- How many times should we try to restart the

processes?
- Which processes should we  

restart when restarting a process?

19
(Image source: Learn You Some Erlang)

http://learnyousomeerlang.com/supervisors%23from-bad-to-good

© 1999-2016 Erlang Solutions Ltd.

Erlang/OTP – a few other things

• Distribution
• ETS: term storage
• Mnesia: distributed database
• OTP applications:

- Components that can be started/stopped
- They can be reused

• OTP releases:
- Release = a system consisting of applications
- One Erlang VM executes one release

20

© 1999-2016 Erlang Solutions Ltd.

Summary

• Processes
- Actor model: messages
- Start, termination
- Registration, links
- Hot code loading

• OTP
- gen_server
- Supervisors

21

